

NAT WADSWORTH

[J]
HAYDEN BOOK COMPANY, INC.

Rochelle Park, New Jersey

\
,\

Acquisitions Editor: DOUGLAS McCORMICK

Production Editor: TERRY DONOVAN

Art Director: JIM BERNARD

Cover Illustration: GEORGE BAQUERO

Original Artwork: JOHN McAUSLAND

Composition: McFARLAND GRAPHICS AND DESIGN, INC.

Printed and bound by: ARCATA GRAPHICS CO.; FAIRFIELD GRAPHICS DIVISION

Library of Congress Cataloging in Publication Data

Wadsworth, Nat.
Data base management for the Apple.

1. Data base management. 2. Apple computer. I. Title. QA76.9.D3W3
1983 001.64'2 83-4387
ISBN 0-8104-6282-6

Apple"' is a trademark of Apple Computer, Inc.

Copyright© 1983 by Nat Wadsworth. All rights reserved. No part of this book may be
reprinted, or reproduced, orutilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying and recording, or in
any information storage and retrieval system, without permission in writing from the
Publisher.

1 2 3 4 5 6 7 8 9 PRINTING

83 84 85 86 87 88 89 90 91 YEAR

PREFACE

The primary objectives of this book are to:
1) Serve as an introduction to using a personal computer to organize

and manipulate information. In some circles this general concept is
referred to loosely as data base management.

2) Present a rudimentary, but functional, information management
program written in high-level language (BASIC). This program, by
itself, may be used to explore and understand fundamental computerized
information management processes.

3) Provide, for the more advanced student or enthusiast, a well­
documented-program framework from which one may proceed to
modify and enhance the capabilities of the core program.

In striving to meet such goals, a large number of program design
decisions had to be made involving numerous constraints. Where
conflicts arose, the basic principles followed were to opt for simplicity of
operation and/or presentation at the sacrifice of programming sophisti­
cation, operating speed, or advanced capabilities.

After many years of programming, I am thoroughly convinced that
no single program can come even close to satisfying all the requirements
of the general public at large. By providing the type of extensive
program documentation included in this book, however, I have
attempted to provide a platform from which the dissatisfied can build or
restructure to their heart's content. This provides considerably more
freedom of choice than one receives when one purchases a program on a
"locked" disk.

I believe that providing freedom of choice is a good part of what life
is all about. An exciting aspect about the use of personal computers is
that they can aid us in making suitable choices. An exciting aspect about
data base management is that it can help us to organize information so
that we might make intelligent suitable choices. An exciting concept
about computer programs in general is that, if we know how they work,
we can make suitable intelligent choices concerning how they perform in
the future,

Nat Wadsworth

1

CONTENTS

INTRODUCTION TO COMPUTERIZED DATA BASE MANAGEMENT

OrganizingisaLotofWork 2 LettheComputerDolt 3

2 TOWARD UNDERSTANDING DATA BASE MANAGEMENT

A Data Base Vocabulary 5 Controlling Your Data
Base 9 Formatting Your Data 10 A Few
Conceptual Examples 11 Watch Those Expenses! 13

3 OPERATING THE DATA BASE PROGRAM

It Is Interactive! 16 The Primary Menu 17
Creating a Data File 17 The Secondary or Operations
Menu 19 The APPEND Operation 19 Numeric
Fields Only Accept Significant Digits 21 The INSERT
Operation 21 The CHANGE Operation 23 The
DELETE Operation 25 The LIST Operation 27
The FIND Operation 31 The SORT Operation 33
The TALLY Operation 35 Saving a File on a
Diskette 37 Obtaining a Catalog of a Diskette 38
Reading a Data File from a Diskette 39 Erasing a Data
Base File from Memory 40 Leaving the Data Base
Management Program 41 Deleting Data Base Files
from a Diskette 41 Try It! 41

APPLE DATA BASE MANAGER: SOURCE LISTING 42

4 DATA BASE APPLICATIONS

MAILING LISTS 48

The Classic Application 48 Defining the Record
Format 48 A Zip Code Is Not a Number 50
APPEND Your Data 51 Doing a Mailing 52
Update Your File as Necessary 53 Experiment, But
Remember the Limits 54

INDEXES 54

1

s

16

48

All It Takes Is Two Fields 54
Hard Work 56

HOUSEHOLD INVENTORIES 58

The Computer Does the

You Need Not Be Elaborate
Evaluating Your Assets 60
Safe Deposit Box 61

58 Fill the File 59
Make a Few Copies for the

TAX DEDUCTIONS 61

You Still Have to Keep Records 61 Example
Entries 62 Organize and Deduct! 63

SALES ANALYSES 64

Typical Data 64

PARTS LISTS 66

Sales Analysis 65

APPOINTMENT ORGANIZER 67

Line 'Em Up! 68 Practical Aspects 69

SELF-TUTORING 70

CHECKING ACCOUNT 72

Check It Out 72 Putting It to Work 73

INVESTMENT PORTFOLIO 74

Update as You Go Along 75 Analyze When Ready 75
Now You Are on Your Own 76

5 A TECHNICAL OVERVIEW

6

7

Program Design Philosophy 77 How the Data Is
Organized 78 Control Arrays 78
Storing Files 79 Major Routines 79 Notes about
Line Numbering 84

PROGRAM COMMENTARY

Line-by-Line Commentary 86 Variables Usage 100
Table of Variables 101 Table of Line Number Cross­
References 103

BELLS AND WHISTLES

The First Rule 108 Basic Customizing 108 Use
the Programmer Aids 109 Decide First! 110
Restricting Access 111 Going the Other Way 111
Modifying Existing Routines 112 From Numbers to
Names 114 From Names to Numbers 116
Changing CHANGE 117 Fixing Up FIND 118
Don't Forget This 119 Streamlining 119 This
and That 120 Toward a Disk-Based Version 121

77

84

108

DATA BASE MANAGEMENT FOR THE APPLE

INTRODUCTION TO
COMPUTERIZED DATA
BASE MANAGEMENT

"Data base management." Everybody seems to be using this phrase these
days. Just what does someone mean when they use such terminology?
The truth of the matter is that the exact meaning of the phrase "data base
management" can depend to some degree on the context in which it is
used!

A person who works in the accounts receivable department of a
large firm, whose job is to track and collect "past-due" accounts, is
performing data base management.

An individual who keeps a personal address book of friends,
relatives, and associates is performing data base management.

And a teacher who maintains records of students' grades and
attendance is certainly involved with data base management.

The Internal Revenue Service (IRS) is deeply involved in many
aspects of data base management: massive data base management. Ah,
but let's try to keep this text cheerful

You see, the central concept of data base management-and you
may verify that it applies to all of the above examples-is simply this: it is
the physical control of information.

Why control information? So you can use it more effectively!
Random collections of facts have little value. Organized and compiled
knowledge can have tremendous value.

The accounts receivable clerk who merely knows that "some
businesses owe money" is going to have a difficult time coming up with
the cash so that the company can meet its next payroll. But the same
clerk who culls the files to identify the accounts that are indebted, who
extracts the invoice numbers, amounts due, and who obtains the
telephone numbers of those accounts is in a position to take immediate
action. Action that can result in those bills being paid promptly!

If you keep the names and addresses of all your friends, relatives,
and acquaintances on scraps of paper tucked in various nooks and
crannies around your home, you are probably going to lose track of some

2 DATA BASE MANAGEMENT FOR THE APPLE

associates. But if you organize that information in, say, a little old
address book and you organize that address book by your contacts' last
names, then, oh yes, you can quickly look up the phone number or address
of those with whom you desire to communicate.

Likewise, lots of luck to the teacher who didn't keep meticulous
grade records so that the progress of students could be reviewed with
parents, other teachers, and the pupils themselves.

As for the IRS, wouldn't it be a shame if they suddenly lost the
ability to organize and control all that tax information? It could certainly
result in chaos!

Organizing Is a Lot of Work

Sure it is. That is one of the big problems with managing information. It
takes a lot of hard work and effort to keep it organized.

There is a universal physical law often referred to by scientists,
known as the Law of Entropy. The gist of this theory is that, if left to
themselves, things tend to fall apart or go into disarray. Well, this
physical law wasn't intended to serve as a theorem in information
management. But if you look at your own personal experience, you may
tend to agree that there sure seems to be some kind of "force" at work that
applies to keeping track of information. If left unattended, information
seems to dissipate and become increasingly disorganized! It seems to
take lots of work-energy-to keep information arranged in usable
form.

Trouble is, people seem to have an aversion to constantly struggling
to keep information organized. Ever notice how people in an office would
generally prefer to go to a meeting or talk on the phone rather than
straighten out that pile of papers on their desks?

Do you really enjoy periodically having to go through your little old
address book (particularly during the holiday season when you are
supposed to be sending cards, but you would prefer to be going to
parties)? With 25% of the population moving every year, it amounts to a
lot of messy erasing and updating just to keep a little old address book in
order.

I have been told by practicing teachers that keeping a constantly
updated record of students' attendance and grades is a lot of work. It sure
doesn't seem to be a lot of fun, from what I have been able to observe at
close hand.

The good old IRS employs thousands of people just to keep their
information about how you pay your taxes organized. They pay those
people with lots of your money. So, not only is organizing information a
lot of work, it is expensive!

INTRODUCTION TO COMPUTERIZED DATA BASE MANAGEMENT 3

let the Computer Do It

The work, that is. Sure. That is what this book is all about. Let's have a
computer do as much of the work as possible when it comes to organizing
and compiling information. Then you and I can have more time to take
advantage of that information and put it to good use.

Another way of looking at information is to consider it as power! It
takes energy to acquire, organize, and interpret data. It takes effort to
keep it ordered. But, once harnessed and controlled, information can
produce concrete results. Results equals personal power.

Of course, you know that a computer is well suited for performing
many of the tasks associated with managing different kinds of
information. It can be programmed to be proficient at storing,
retrieving, arranging, rearranging, and extracting specific facts and
figures. Frequently, it can perform such operations in a blink of 'the

-; INFORMATION ~\0~-=-

-:, \~~ -
..... ORGANIZE

SORT
ll!!!!!!!!!!!!!l!!!!!!lllCOMPACT

INFORMATION
INFORMATION
INFORMATION

Fig. 1-1. Your Apple II computer can quickly organize data and output specific
information by using the data base program in Chap. 3.

4 DATA BASE MANAGEMENT FOR THE APPLE

proverbial eye. Even large tasks that might take a person several days­
such as sorting operations-can be executed in a matter of minutes when
performed by a computer such as the Apple II, Apple II Plus, or
Apple Ile.

The computer has other advantages over a person when it comes to
performing rote work. It is accurate. Unless the computer is malfunc­
tioning or the program it is executing (heaven forbid!) has flaws, it will
unerringly adhere to the rules laid down for its performance. There are
no slip-ups, no misclassifications, no misfilings into the wrong bin where
the data might be lost forever. It does precisely (and only) what it is told
to do. (Of course, if you tell it to do the wrong thing, it will do that too!)

It can handle large volumes of information. Quantities of informa­
tion that would reduce most people to little mounds of total frustration
are routinely processed by the machine without so much as a whimper.

The computer can operate unattended. Once you have told it what is
to be accomplished, you can often walk away from the machine while it
cranks away on its own. Need a mailing list in zip code order? Tell the
computer to print it out while you go to lunch!

Are you convinced? Sure you are. You know your Apple can save
you a lot of time and trouble by processing and organizing data.Up until
now, you just may not have known how to tell your computer how to do it!
That obstacle is about to be eliminated.

DATA BASE MANAGEMENT FOR THE APPLE

TOWARD
UNDERSTANDING DATA
BASE MANAGEMENT

Just knowing that a computer, equipped with the proper program, can
perform a stated task, is not enough in itself to get you very far. Like all
tasks one is likely to encounter, there is often more to know about the
process than simple recognition that the job can be accomplished.

So it is, indeed, with data base management. It is not enough to
merely be aware of the fact that a computer can be programmed to
manipulate data in a variety of ways. While it is a good starting point to
know that you can extract particular kinds of information, analyze large
amounts of information to uncover hidden relationships and correlations
or sort data into convenient groups, it is not enough to actually
accomplish real objectives.

No, in order to effectively use a computer to manage data, you must
have at least an elementary appreciation of how it goes about
accomplishing its work. And, in order to begin discussing that subject, it
is necessary to know something about how information can be processed.
That is, how it can be broken down into its component parts so that it can
be accessed and physically manipulated by a computer.

A Data Base Vocabulary

It will behoove us to define some fundamental terms at this point so that
you can understand what it is I am talking about as I discuss various
aspects of data base management.

I like to start at the ground level and work up when exploring new
territory. Thus, let's start by defining the smallest piece of information
that can be dealt with by a computerized information management
system.

It is a character. That is, a single letter (of the alphabet), numeric
digit (0-9), punctuation mark, special symbol, or control code (such as a
carriage return, linefeed, or the "escape" indicator).

5

6

CHARACTERS l
build

RELDS

build

RECORDS

build

FILES

DATA BASE MANAGEMENT FOR THE APPLE

These are the field names

NAME JOHN DOE

ADDRESS 125 MAIN STREET

CllY ANYTONN

STATE NV
ZIP CODE 88888

CATEGORY CUSTOMER

Internal Fields
record __----;?' in each \'--..__

numbers____-- / record \ ~

L ,---,

1 JOHN DOE 125 MAIN ST. II 8888 CUSTOMER

2))_
3 j
•)7
• ~\.
N .A

RECORD#1

RECORD #2

RECORD#3

•

Characters
maybe used
to form words.

strings. etc.

I
Here

arethe
field

contents

_J

l
Individual J'd'

l
Similarty

formatted
records ='"afi• ;o:o;:J

Fig. 2-1. Building a data base: characters make up fields; fields make up records;
and records make up files.

Now a computer actually processes characters in encoded form. In
reality, each character is broken down still further, into binary bits. But,
as far as we will be concerned at the practical level, the decoding of
individual characters into binary patterns-such as ASCII code-will be
considered transparent to the user. Such encoding is taken care of by the
machinery without intervention on our part. All we need know is that,
when we press a key on a keyboard, the computer is going to interpret it
as representing a unique character. This is the smallest unit of

TOWARD UNDERSTANDING DATA BASE MANAGEMENT 7

information that will be inputted or received as output from the data
base management program.

If you put a bunch of characters together you have what is
sometimes referred to by computer technologists as a character string.
The term "string" in this context refers to a group of characters that are
(or may) be manipulated as an entity. The concept is important because it
is often used to define the particular group of characters that a computer
is to look for during a search operation. Note that a string may actually
consist of just a few characters (such as might make up part of a word) or
a large number of characters (such as might be encompassed by several
words or a phrase). (In fact, a string might also be singular, in that it is
represented only by a single character.)

A word can be defined as a string of characters separated by a
space. (Remember, as far as a computer is concerned, a space, such as
occurs between each word on this page, is actually represented by a
specific character: the space character!) People are quite familiar with
the concept of words. Computers have to be taught how to recognize
words. In the context of data base management, a space means the end of
a word to the computer!

Now we come to a very important concept in data base management:
afield. A field can best be thought of as a logical element. That is, the
information within a field is generally considered to relate to a specific
purpose or function. The contents of a field may consist of entire strings,
words, or just individual characters.

Some examples of "fields" may help illustrate the concept. The
first name, middle initial, and last name of a person might all be placed
together in a field. This field might be referred to as a "name" field,
because it contains all the information pertaining to an individual's
name.

All of the information relating to a person's or a firm's street
address, such as the house or building number, the name of the street,
boulevard or avenue, and even the apartment or suite number, could be
grouped together in a field. Such a field might be logically referred to as
the "local address" field.

Note that in these fields there are a number of words, but they all
relate to the same logical subject, such as local address or the name of a
person.

The concept of a field is important in data base management
applications. This is because certain operations, such as search and sort
procedures, are performed relative to the contents of specific fields. Once
fields have been defined for a particular data base, most of the
manipulative power provided by the program will focus at the field level.
It is thus important to fully appreciate the divisional effects of field
boundaries.

While fields typically contain information that is logically or
symbolically related to other information within the same field, this does

8 DATA BASE MANAGEMENT FOR THE APPLE

not have to be the case. Physically, a field in the data base program
provided in this book is delineated by the inputting of a carriage return
(end of line) character.

Furthermore, the maximum size (length) of any field in this data
base management system is limited to a total of 40 characters (including
spaces, punctuation, special symbols, etc.). And, as will be pointed out
shortly, there is a limit to the maximum number of fields that may be
defined for a particular data base.

Finally, before going on to other definitions, it will be pointed out
that, in this system, there can be two different types of data fields.

Alphanumeric fields can contain any valid characters, such as
letters of the alphabet, digits, and special symbols. These characters may
be used without regard to format within a field. The alphanumeric field
is the most commonly used type of field.

Numeric fields may only contain a single numeric value, expressed
precisely in terms of significant digits, possibly including a sign and a
decimal point. The significance and application of numeric fields will be
discussed later.

One or more fields may be organized in a fixed sequential
relationship to form a record. A record normally forms a logically
complete structure. That is, in an application such as maintaining a
mailing list, a record might typically hold an individual's name, street
address, city and state, zip code, telephone number, and a classification
code. Each of those separately identified parts of the record would
comprise a field. Taken together, those fields constitute a record. Note
that all of the information within each record relates to a particular
individual.

Records are important in the data base system being presented
here. Records are the smallest physical units that can be created,
removed, or moved about within a data file.

Which leads us to the definition of a file! A datafile is a collection of
records, all of which have a specific, defined format. Typically, all
records in a file relate to a particular application, such as maintaining a
mailing list.

In this data base management system, all of the records in a single
file are stored in the computer's memory at one time. That is, the file is
considered to be "memory-resident" whenever it is being processed by
the computer. Of course, when not in use, the contents of a file can be
stored on a diskette for safekeeping.

A data base may be considered as consisting of all of the information
that you have, organized in a form that can be processed by your
computer system. As you create new files of information on your
computer system, your data base will expand to give you more and more
personal information-handling power!

TOWARD UNDERSTANDING DATA BASE MANAGEMENT 9

Controlling Your Data Base

The program that directs the operation of your computerized data base
management system works in two fundamental modes. One mode is
referred to as the data entry mode. When in this mode, information is
accepted as data to be stored and manipulated by the computer.

The second mode is termed the command mode. Commands are the
directives you give to the program to cause it to act on the information in
a data file in a prescribed manner. These commands provide the ability
to add data records to a file, change data in selected records, and insert or
delete records. Other commands permit you to search for specific
information by examining the contents of fields and to arrange the
records in alphabetical order as a function of the contents of a specified
field. There is even a directive that permits the summing of arithmetic
values in numeric fields.

Still other commands enable entire data files to be stored on a
diskette or transferred from a diskette into memory.

The program commands give you the ability to personally control
every aspect of your new information-processing tool!

You may have noticed that the types of commands mentioned above
can be grouped into several categories. One category might be viewed as
having to do with the editing of information in a data file. The ability to
add or delete information in a file or to change the contents of all or part
of a record allows you to conveniently keep your information up to date.
For instance, if you are maintaining a mailing list, you need the ability to
enter a person's change of address in the specific record that pertains to
that individual.

Search and sort commands provide for the organizing of informa­
tion. The search directive screens out unwanted information and
displays only those records containing sought-after data. For instance, if
you wanted to locate all of the people in a mailing list that lived in a
particular state, you could direct the data base program to search all the
data in a file and display just those records having an address in the
desired state.

The sort directive permits you to group information into categories,
and even subcategories. If you wanted to take advantage of third class
mailing rates at the post office, you would have to present all your mail
arranged according to zip codes around the country. This is a difficult
task to perform by hand. However, the computer can accomplish it with
ease by merely arranging the contents of a file on the basis of a zip code
field!

A third type of command may be classified in the mathematical
category. The ability to "tally" the numbers in a specified field for a
group of records has considerable value in many applications. For

10 DATA BASE MANAGEMENT FOR THE APPLE

instance, the individual prices of components in a complex system could
quickly be summed by the computer to arrive at a final system cost.

And finally, there are the directives related to data storage. These
are the commands used to place a data file on a diskette or to reactivate a
file by bringing it back into memory from a diskette.

Formatting Your Data

Now, the key to successfully utilizing a data base management program
lies in preparing a good format for your raw data, that is, in arranging
your initial information so that it can be effectively processed and
analyzed by the computer. A good portion of this book will be devoted to
providing practical examples of how data can be formatted to
accomplish various applications.

Right now, it will help you get a feel for the process of initially
formatting a data base by reviewing the following:

Data within a file is organized as records. Each record is assigned
(by the computer program) a reference number. This reference number
is maintained without the operator's assistance, but it may be referred to
by the operator to perform certain operations. Thus, the first record
inputted into a file is given the internal reference number one. The next
record is referenced as record number two, and so forth. If the operator
wants to remove a certain record from the file, the number of that record
can be referenced and the deletion accomplished. After a deletion, the
records remaining in the file would automatically be assigned numbers
to reflect their new positions within the file. Similarly, if a sorting
operation rearranged the order of records in a file, the number assigned
to each record might be altered. Again, all of this is taken care of by the
computer program. The internal numbering system is just a means of
communicating to the user the actual physical location of each record
within a file at any given time.

You know already that each record is further subdivided into fields.
A field is usually assigned a specific function or purpose (though this
does not have to be the case). The maximum number of characters in a
field is decided by the user for each application (with an upper limitation
of 40 characters to a field). Also, fields are designated as alphanumeric or
strictly numeric, depending on the type of data that is to be stored. All of
the information in an individual field in this data base management
system will normally appear on a single line of the display.

The concept of a field is important because each field delineates a
boundary within a record. Furthermore, the data base management
program operates on the contents of fields. That is, the data within
records is processed on a field-by-field basis. To assist the data base
operator, fields may be assigned reference names when a file is initially
formatted. Thus, if one of the fields in a record will always contain a

TOWARD UNDERSTANDING DATA BASE MANAGEMENT 11

person's phone number, the field might be assigned "PHONE NR" as a
name. Thus, each time that portion of a record was accessed by a user, the
field name would be presented as a reminder of the type of data
contained therein.

Fields contain characters arranged as words or strings. There is a
limit to the number of fields and the total number of characters that can
be assigned to any record. (These specifications will be detailed later in
this manual.)

Remember, a character is the smallest amount of information or
data that can be manipulated by the data base operator in this system.

A Few Conceptual Examples

With the background you now have, it is time to present a few simple
illustrations of how a data base management program may be put to
practical use.

Let us present one example by assuming that you are a salesperson
for an insurance company.You work out of an office in your home on an
essentially independent, unsupervised basis. You are basically an
industrious person, constantly striving to improve your performance
(primarily because that increases your income).

Your company creates leads for you by advertising in various
magazines. People who respond to the ads fill out a coupon, indicating
their interest and providing their name and address. Your company
forwards batches of these coupons to you each week. A big part of your
job as a salesperson is to follow up on these leads and try (very hard) to
sell these people suitable insurance policies. Of course, the company you
work for carries many lines of insurance, so you have clients interested in
many different types of policies.

Not only must you constantly strive to obtain new customers, you
must also continue to service your growing base of ragular customers.
Periodically, you need to call on them, review their current needs, update
policies, and so forth.

You are, indeed, becoming a very busy person. You come to the
realization that you are starting to face a real problem just keeping all
your clients and prospects organized. You have, for some years,
maintained a large notebook. You have even gone so far as to devise a
system whereby you create a new page for each customer you sell. You
file these pages in alphabetical order. By making pertinent notes on
these pages you (usually) are able to keep some kind of a handle on the
situation.You do this by periodically scanning all these notes, keeping an
eye out for policies that are about to lapse, news of an increase in the size
of a family, changes in car registration, etc. These are clues that the
customer should be contacted for policy updating.

12 DATA BASE MANAGEMENT FOR THE APPLE

If that wasn't enough to keep you busy, the real problem centers
around those ever-arriving new prospect coupons. Your present system
is to simply stuff each pile of new coupons into your briefcase. As you get
time, you take out a few coupons, try to make contact with the prospect
and set up an appointment. You admit to yourself that the system is a bit
messy and you have no doubt that a few prospects "fall through the
cracks." It is definitely time to do something about the matter.

Fortunately, you have an Apple II computer just sitting around
your home office with nothing to do and you have wisely obtained a copy
of this book. Now, let's look at what you could do in this particular
situation.

You could establish a data file to keep track of your customers and
prospects (and even your friends and associates)! For illustrative
purposes, we will make the structure of this file very simple. But you will
soon realize that you could increase the power of this information
management system by expanding the number of fields employed in a
record.

Let us say that you define each record in the file to consist of six
fields. You name the fields as follows: Name, Address, City, State, Zip
Code, and Category. (The names you assign serve to identify the contents
of each field.)

You establish your data base by sitting down one day and entering
all of the relevant information into the computer. The information is
simply transferred from those coupons the company sends you (that are
filling your briefcase).

You decide to categorize each prospect on the basis of the type of
insurance that person has expressed an interest in, such as automobile,
life, property, or medical coverage. This information is entered in the
"Category" field.

Perhaps you end up with several hundred names and addresses in
your initial data base. Of course, information has been entered
essentially at random as you grabbed inquiry coupons out of your
briefcase.You decide the first thing you would like to do is have your list
of prospects arranged in zip code order. You press a few keys on the
keyboard of your computer. The computer arranges all the records in the
file into zip code order in accordance with the contents of the "Zip Code"
field.You press a few more keys and the system outputs the ordered list
on your printer.

Next you decide you could become more effective at your selling
efforts by "softening up" potential clients with an introductory letter.
What is more, you want to slant the letter depending on the type of
insurance with which the prospect has expressed an interest. So, you sort
your data file on the basis of the contents of the "Category" field. This
groups all the prospects according to interest. After this operation you
find that record numbers 1to40 contain clients interested in automobile

r

TOWARD UNDERSTANDING DATA BASE MANAGEMENT 13

coverage, 41to55 in life, 56 to 80 in medical, and numbers 81 to 180 are
looking for property coverage. Wow! You have just discovered something
you never fully realized before! Fully half your prospects are interested
in property coverage. Perhaps you had better spend more time boning up
on the details of providing property insurance and less time on life
policies? In any event, you are now in a position to press a few more keys
on the computer and have mailing labels printed for each group of
prospects. You then stuff an appropriately slanted letter into each
envelope to kick off your new, streamlined selling approach.

Now it is time for you to go on the road and call on all those
prospects. But wait! Your territory covers three states. Are you just going
to hop in your car and drive haphazardly from place to place? Not any
more. You direct your computer to re-sort your data according to the
contents of the "State" field. When grouped accordingly, you then sort
each state subgroup against the "City" field. Presto! You can now have
the computer print you a list of prospects ordered by city and state.You
can immediately pinpoint those cities that have the most prospects. Now
you can plan your trip for maximum selling effectiveness.

In a matter of a few hours your business lifestyle has changed from
seeming chaos to ordered efficiency. What do you think of that?

Of course, this example was made very simple to illustrate the
concept of how a data base management program can be put to work. In a
realistic application, you might expand the number of fields in a record
to, say, 20 or 30, in order to keep track of a great many parameters. Thus,
you might have a field for a client's phone number, fields for dates on
which you actually made a call, fields amplifying a customer's special
requirements, fields for recording policy numbers, renewal dates, etc.
Thus, the power and efficiency of the system can be considerably
amplified beyond that illustrated in this initial example. Put your
imagination in gear. Do you have visions of personal power and control?
Can you think of ways in which a system such as this could make your life
more productive and enjoyable? I'll bet you do and that you can!

Watch Those Expenses!

Do you know that you can use this same data base management program
to help you keep track of a personal expenditures budget?

One way to approach such an application would be to format a
record with the following fields: Item, Category, Tax Code, Budget
Amount, Actual Amount.

At the beginning of each accounting period, let us say monthly for
purposes of this discussion, you could enter projections or estimates.
Some typical entries might appear as follows on the next page.

14 DATA BASE MANAGEMENT FOR THE APPLE

RECORD NR. 1

ITEM: MORTGAGE INTEREST

CATEGORY: MORTGAGE

TAX CODE: DEDUC

BUDGET AMT: 55J!t

ACTUAL AMT:

RECORD NR. 2

ITEM: MORTGAGE PRINCIPAL

CATEGORY: MORTGAGE

TAX CODE: NON-DEDUC

BUDGET AMT: 22

ACTUAL AMT:

RECORD NR. 3

ITEM: ELECTRICITY

CATEGORY: UTILITIES

TAX CODE: NON-DEDUC

BUDGET AMT: 45

ACTUAL AMT:

RECORD NR. 4

ITEM: PHONE SERVICE

CATEGORY: UTILITIES

TAX CODE: NON-DEDUC

BUDGET AMT: 8111

ACTUAL AMT:

You would continue making similar entries for whatever expendi­
tures you anticipated making. When you had completed indicating your
plans, you could have the computer "tally" the total budgeted expendi­
tures for all the records under the field named "Budget Amt." Will you
have enough money for the projected expenditures? If not, you might
want to alter your spending plans on the spot.

You could save this initial projection on a diskette. Then, as you
actually made expenditures or at the end of the month, you could recall
the data base from the diskette.You would then enter the actual expense

TOWARD UNDERSTANDING DATA BASE MANAGEMENT 15

amounts under the field named "Actual Amt." Now you could compare
how your projections did versus actual charges. And, you could tally the
"Actual Amt" field to obtain a total for the period too.

But that is not all. Suppose you wanted to look at your total utility
expenses? All you need do is perform a sort on the contents of the
"Category" field. Then, with all expenses for "utilities" grouped
together, you could direct the program to tally over just the selected
"utilities" expenditures. Spending too much there? Put a stop to it right
now, before you go broke!

And how about at the end of the year when it comes time to pull
together all those tax deductions? Well, you could perform a search
operation on the contents of the "Tax Code" field and have the computer
display all those beautiful tax deductions. Or, you could sort on that field
and have the computer group all deductions together in the file. Then you
could have the computer perform a mathematical tally of all the records
in that group to obtain a total "tax-deduction" figure! Neat, eh?

Are you beginning to see the big picture? Let's try one more
hypothetical illustration:

You are a small businessperson.Naturally, you have to give credit
terms to your regular customers. But, it turns out that not everybody
pays promptly. You need to keep track of who owes you money!

You format a file with fields to hold: the date of a transaction,
invoice number, description of merchandise, amount due, customer's
name, address, etc.

Each day you enter the information pertaining to sales made on
credit. If accounts are paid, you simple remove the appropriate record
from the file, since you no longer need to track the invoice as an account
receivable.

Perhaps you want to remind customers of past-due invoices at the
end of each month? You could arrange the file according to serial invoice
numbers, for example, by performing an appropriate sort operation.
You could then have the computer list the invoice number, amount due,
and name and address of each account that is in arrears. Why, you could
pop the slips of paper right off the printer into a glassine-window
envelope and have a friendly reminder in the mail in a matter of seconds!
Ah, the wonders of computer technology and the power of a data base
management program.

Are you ready to put a data base manager to work for your own
sake? Then just turn to the next chapter to get into the nitty-gritty details
of operating your own Apple data base program.

DATA BASE MANAGEMENT FOR THE APPLE

OPERATING THE DATA
BASE PROGRAM

In this chapter I will try to give you a feel for how you communicate with
and give directives to the data base management program described in
this book and presented at the end of this chapter. Later portions of this
manual will provide plenty of practical examples of its operation.

As you read this chapter, you may want to try various operations
yourself. If that is the case, then load the program into your Apple II,
Apple II Plus, or Apple Ile computer and start it by giving the computer
the RUN command.

The minimum equipment you need to successfully implement this
program is an Apple II computer equipped with at least 48K of memory
and one disk drive. The system must be capable of executing Applesoft
BASIC. You will be able to build larger data files if the Applesoft
interpreter is in read-only memory (ROM) rather than random-access
memory (RAM). Of course, you will also need a system display device. If
you want hard copy of your data base, then you will have to have a printer
as part of your system. The program expects to see the printer interface
in slot number 1 of the Apple system.

It Is Interactive!

This data base management program is designed to respond to the user
in what some people describe as a "conversaticinal" manner. That is, it
acts to prompt and guide the user. It does this by providing menus from
which one makes choices, or by asking questions when it expects input(s)
from the operator. This continuous interactive mode of operation
provides a user-friendly environment. Such operation is beneficial to
novice users, since it removes much of the confusion that can occur when
initially using a computer program. Yet, the system retains a high
degree of efficiency for experienced users who may not need much
assistance.

16

OPERATING THE DATA BASE PROGRAM 17

In actual practice, operation of the program consists of really
nothing more than making choices presented by the computer or
responding to requests for inputs. It is thus not at all difficult to
physically operate the program.

Of course, applying the program effectively requires learning some
fundamental principles about data base management. You will gain
much of the understanding needed through actual practical application
examples provided later in this book. For now, let's get started with an
overview of the key capabilities of the program.

The Primary Menu

When you first start the program, a menu will appear on the screen with
the choices:

1. USE APPLE DATA BASE
2. DEFINE RECORD FORMAT
3. READ FILE FROM DISK
4. WRITE FILE TO DISK
5. READ DISKETTE CATALOS
6. EXIT TO DISK EXECUTIVE

9. ERASE FILE FROM MEMORY

This menu will be referred to as the Primary Menu, since it allows
the user to select the broadest types of operations.

To make a choice, you merely press the digit key corresponding to
the number shown in the menu. Pressing the number 5, for example,
results in the computer presenting a catalog of the diskette currently in
the system disk drive.Note that, when selecting a menu option, it is only
necessary to press the single key corresponding to the choice desired. In
fact, the pressing of any key other than the digits 1to6 and the number 9
is ignored by the program when the Primary Menu is being displayed.

Creating a Data File

Naturally, when using a computer, you cannot simply sit down and
blindly start typing in data. The first thing you must do when using this
data base program is to define a file format. That is, tell the computer
how many fields, what type of fields, the size (in terms of numbers of
characters) of each field, and an appropriate reference name for each
field in a record. You begin inputting this information by selecting
option number 2 (Define Record Format) of the Primary Menu.

When option number 2 is selected, the program proceeds to ask the
following series of questions, in the order given: a name for a field, the
maximum number of characters that will be permitted in the field, and
whether the field is alphanumeric or strictly numeric.

18 DATA BASE MANAGEMENT FOR THE APPLE

DESCRIPTIVE FIELD PRICE FIELD

~~~§J0~0DDD ~00000 
(ALPHANUMERIC) 

----MAX SIZE= 10 CHARACTERS----
(NUMERIC) 

-MAX SIZE= 6 CHARACTERS-

Fig. 3-1. Records are formatted by user-defined fields. Each field is assigned a 
name, a maximum length, and is defined as alphanumeric or numeric. 

You input the appropriate information for each field. Then the 
program asks if you want to establish another field. If so, the same 
information is requested again. This procedure is followed until all the 
fields necessary for a particular application have been defined. 

There are program limitations that must be adhered to when 
defining a file structure. For instance, field names may not exceed 1(3 
characters. The maximum length of any field may not be defined as 
greater than 4(3 characters. Fields may only be designated as 
(A)lphanumeric or (N)umeric in type. A record may not contain more 
than 4(3 fields. And the maximum number of characters permitted in a 
record (obtained by summing the maximum number of characters 
permitted in all the fields in a record) is limited to 236. 

Should you attempt to exceed the program limitations mentioned, 
the program will remind you of its capabilities and give you the 
opportunity to make amends. 

Once you have completed defining all the fields that are to be 
provided for in a record, the program determines the maximum number 
of records that can be held in a file. 

Remember, this is a "memory-resident" data base management 
program. That is, all of the information within a specific file actually 
resides within the RAM of the computer when a file is in use. Thus, the 
size of a file and the number of records it can handle are functions of the 
amount of memory in your system and the length of the defined records. 

The maximum number of records that a file can hold is calculated 
by the program immediately after the last field has been defined. This 
value is displayed briefly to the user for reference. Should you discover 
that a particular file definition does not provide for enough records for a 
particular application, you might want to consider redefining the file 
structure in order to achieve your goals. Decreasing the number of fields 
or the number of characters permitted in fields will increase the number 
of records that may be stored in a file. Up to a point, that is. The 
maximum number of records that can be stored in any one file is limited 
by the program to 999. 

(If you need more records than this in a single file, you are probably 
well advised to look into obtaining a disk-oriented data base management 



OPERATING THE DATA BASE PROGRAM 19 

program. That is one where each record is actually stored on a diskette 
and access to the diskette is made each time any information in the data 
base is required. Such disk-oriented data base management programs 
are generally quite expensive.) 

The Secondary or Operations Menu 

Once you have defined the structure of a file, you may begin inputting 
information to build up a data base. At the conclusion of the file-defining 
process, the program will automatically go to the Operations Menu. 
(This will also sometimes be referred to as the Secondary Menu, since it 
is not as broad in scope as the Primary Menu.) 

You can also get to the Operations Menu by selecting option number 
1 (Use Apple Data Base) when the Primary Menu is on the screen. Of 
course, if you try to use this option before you have defined a file (or read a 
previously stored file in from a diskette), then your directive will be 
politely ignored by the program. After all, you can't use a data base if you 
haven't at the very least defined its format. 

Here is how the Operations (Secondary) Menu appears on your 
screen: 

1. APPEND RECORD<S> 
2. INSERT RECORD<S> 
3. CHANGE RECORD<S> 
4. DELETE RECORD<S> 
5. LIST RECORD<S> 
6. FIND RECORD<S> 
7. SORT RECORD<S> 
8. TALLY RECORD<S> 
9. ** NEXT MENU ** 

Those are the data base operations that may be performed by this 
program. Option number 9 returns you to the Primary Menu. (It could 
direct you somewhere else if you are the adventurous type. Those with 
programming ability might want to modify the program to give it 
further capabilities. Well, there's a "hook" for you to use if you want to 
hang your own stuff onto the program!) 

The APPEND Operation 

The first thing you have to do in order to start working with a 
computerized data base is to load the data into your system. The 
APPEND option of the Operations Menu is used to place the program in 
the mode to accept and append new data to the end of the current 
memory-resident data file. 

On the top of p. 20 is an example of how the screen might appear 
in a typical application when the APPEND option was selected. 



20 DATA BASE MANAGEMENT FOR THE APPLE 

--- APPEND RECORD<S> --­

RECORD # 4 MAX CHARS = 20 ALPHA 

FIELD # 1 NAMED: NAME 

Note that the screen reminds the user of the type of operation being 
performed. In this example, it indicates that the system is ready to 
accept data for the fourth record in a file. The current field is limited to a 
maximum of 2~ characters of information. The field type is alpha­
numeric. Data is to be inputted for the first field in the record and that 
field is called the "Name" field. The operator (that's you, isn't it?) will 
then type in the information requested. That new data will appear 
beneath the dashed line that is used to separate the computer's 
prompting from the operator's input. 

Simple, isn't it? 
As soon as the information to be stored in one field has been entered 

(by typing it on the keyboard and pressing the ENTER key), the 
program automatically updates the display to prompt for the data for the 
next field. This process continues until all of the fields for one record 
have been accepted. 

RECORD 
N-1 

RECORD 
N 

FIELD 1 

FIELD 2 

FIELD 3 

FIELD 4 

FIELD 5 

FIELD 6 

FIELD 1 

FIELD 2 

FIELD 3 

FIELD 4 

FIELD 5 

FIELD 6 

r------,. ... 
~--------r-t 

RECORD t-- -----1~ 
N+1 ,--------r-1 r--- ----- .,..~ 

1---- - -----H 
l..------ - -!.I 

ADDED RECORD 

Fig. 3-2. The APPEND operation adds a record at the end of a file. 



OPERATING THE DATA BASE PROGRAM 21 

When the information for one record has been processed, the user is 
asked if another record is to be processed. If so, then the display is 
updated to prompt for the first field in the next consecutive record. If not, 
then the APPEND operation is terminated by the program returning to 
the Operations Menu. 

You can continue inputting new records into a file until it contains 
the maximum number allowed. (Remember, this will be a function of the 
amount of memory available in the system as well as the length of the 
defined records.) Should you fill the file while in the APPEND mode, the 
program will automatically terminate this mode and return to the 
Operations Menu. Should you attempt to select the APPEND mode 
when the file is already filled, then you will be notified that the "file is 
full" and the program will not attempt to perform the operation. 

Of course, during the inputting of information, the program 
performs certain checks on the validity of the information being entered. 
For example, if a field is limited to 2~ characters, the program will not 
allow the operator to input a string that exceeds that length. Similarly, if 
a field has been declared to be numeric in type, then it had better only 
contain a number. Otherwise, the program will advise the user that the 
data cannot be accepted and provide the opportunity to correct the 
situation. 

Numeric Fields Only Accept 
Significant Digits 

If you want to enter the numeric value, say, "2" in a field that has been 
defined as numeric in type, then you only enter the digit 2-you must not 
attempt to enter 2.~ or 2. or ~2.-since these three latter forms of the 
value all contain nonsignificant digits or characters. Furthermore, this 
program always assumes that a number is positive in value unless it is 
preceded by a minus (-)sign. So, do not attempt to use the plus (+)sign 
in a numeric field. 

These restrictions in the definitions of numeric values as they apply 
to numeric type fields are made necessary by the manner in which the 
program checks for operator errors. There are tradeoffs to be made in 
the design of any program. In this case, the protection of novice users was 
given weight over the flexibility some more experienced users might 
enjoy. But then it is likely that the "pros" will have the wherewithal to go 
right in and modify the package if they are not happy with this 
particular limitation! 

The INSERT Operation 

The APPEND operation previously discussed always adds or "appends" 
records to the end of a file. If there are three records in a file, it adds a 
fourth. When there are four, it adds the fifth, and so on. 



22 DATA BASE MANAGEMENT FOR THE APPLE 

Sometimes it is useful to be able to effectively insert a record in a 
file. That is, move all of the records beyond a certain point in the file, 
thereby leaving a space so that a record can be placed in the file. The 
advantage to this procedure is that the file can remain "ordered." Thus, it 
is particularly useful if a file has been sorted by some category and you 
want to add a new entry at a particular point in the neatly arranged file. 

When the INSERT option is selected, the program initially 
responds with a display having the following format: 

--- INSERT RECORD<S> ---

LAST RECORD IN FILE IS: 3 

INSERT BEFORE RECORD NUMBER? 

Note that this option starts off by advising the user of the highest 
numbered record that currently exists in the file. This is done for the 
sake of reminding the user of the highest possible position at which a new 
record could be inserted. 

Once a user specifies the record number at which a new record is to 
be inserted, the program switches to a display format similar to that 
used by the APPEND option. This format prompts the user for the data 
that is to be inserted. If you were inserting a new record at record 
position number 2 in a file, a typical INSERT display might appear as: 

INSERT RECORD<S> 

RECORD # 2 MAX CHARS = 20 ALPHA 

FIELD # 1 NAMED: NAME 

Note that, by giving the record before which the new record is to be 
inserted, the inserted record actually acquires that record number. 
Thus, stating that you want to insert before record number 2 means that 
the inserted record becomes record number 2 in the file. 

When all the fields in the record being inserted have been 
processed, the program asks if the user wants to continue inserting 
records at the same point in the file. If so, then the program prompts for 
the data that is to go in the next inserted record. 

It is important to realize here that when a number of records are 
inserted at one place in the file, that the inserted records will acquire 
consecutive numbers. All other records in the file are moved apart ("up" 
in terms of record number assignments) to make room for the inserted 
records. Thus, specifying the first insertion point as before record 
number 2 and consequently providing data for two records result in 
those records becoming record numbers 2 and 3 in the file. The original 
record number 2 would be moved "up" to become record number 4 in the 



OPERATING THE DATA BASE PROGRAM 

FIELD 1 
RECORDN FIELD 2 

FIELD 3 

FIELD 1 

RECORDN+1 FIELD 2 

FIELD 3 

+ 
FIELD 1 

FIELD 2 
RECORD N + 2 1-----­

BECOMES 
RECORDN+3 FIELD 3 

FIELD 1 RECORD N + 3 ----­
BECOMES FIELD 2 

RECORD N +4 1------
FIELD 3 

FIELD 1 

• FIELD 2 

FIELD 3 

Fig. 3-3. The INSERT operation inserts a record within a file. 

23 

INSERTED RECORD 
BECOMES NEW 
RECORDN+2 

file. All other original record numbers higher in number would also be 
moved "up" appropriately. 

The CHANGE Operation 

After a file of data has been created, it frequently needs to be updated. 
For example, if you are maintaining a mailing list, it is a sure bet that 
you will constantly be having to revise addresses due to people moving. 

You use the CHANGE option to make alterations to records already 
in a file. 

Now, the CHANGE capability of this data base management 
program will take a little longer to explain than some of the other 
operations. This is because it has some special features that, while taking 
a little longer to initially explain, result in faster and smoother operation 
when you need to make a lot of changes in a file. 

Experience has shown that in typical applications only a few fields 
in each record need to be changed. However, it is often necessary to 
change a number of records within a file. 

Taking a mailing list application for further illustration, suppose 
you receive notices of changes in addresses on a daily basis. Once a week 
or month or whatever period of time is convenient, you sit down to update 
your computerized data base.You know, as you prepare to make a batch 
of address updates, that only the street address, city, state, and zip code 
fields will be altered. It will not be necessary to alter a person's name or 

-



24 DATA BASE MANAGEMENT FOR THE APPLE 

classification or any of the other data you might be keeping in each 
record. 

The most efficient way to tackle this job would be to just modify 
those fields that need alteration in the appropriate records. 

That is exactly how you can proceed using this data base 
management program! (Some data base management programs do not 
have this kind of flexibility.) 

When you first select the CHANGE option, the display will be 
formatted along the following lines: 

--- CHANGE RECORD<S> 

INPUT FIELD<S> TO BE CHANGED. 
USE FIELD NUMBERS <NOT NAMES>. 
END YOUR LIST BY INPUTTING THE 8 0. 

If, for illustrative purposes, field numbers 2, 3, 4, and 5 contained 
the street address, city, state, and zip code, respectively, within the 
records of a file, you would then input those numbers at this point. (After 
each number is typed you would press the ENTER key to input it to the 
program.) Note that you terminate your list of fields to be changed by 
entering the number fil. 

What you are doing is setting up the data base management 
program to deal only with those fields that need changing. It will thus 
skip over the fields that are to remain unaltered. 

NEW DATA I-.. 

NEW DATA I .... 

RECORDN 

FIELD 1 

• 
OLD DATA 

• 
OLD DATA 

• 

Fig. 3-4. The CHANGE operation permits the contents of individual fields to be 
modified. 

Once you have indicated which fields within records are to be 
modified, the program proceeds to ask for the number of the first record 
in the file that is to be updated: 

--- CHANGE RECORD<S> 

LAST RECORD IN THE FILE IS: 3 

BEGIN CHANGES WITH RECORD NUMBER? 



OPERATING THE DATA BASE PROGRAM 25 

Note that this portion of the program also reminds you of the 
highest numbered record currently in the file. After all, you don't want 
to start trying to make changes to a nonexistent record. 

When you have indicated the number of the record in the file that 
you want to start changing, the display responds with the familiar 
prompting format: 

- CHANGE RECORD<S> 

RECORD # 2 MAX CHARS = 40 ALPHA 

FIELD # 2 NAMED: ADDRESS 
---~---------~---~~---~~~ 

As you input the new data for each field, the display will prompt for 
the next field that is to be changed. When all of the designated fields 
within a record have been processed, the program will ask: 

CHANGE NEXT RECORD? 

If so, the program automatically brings up the next record in the file and 
prompts for changes to the same set of fields. Thus, you can rapidly 
proceed to make alterations to a block of records within a file. 

If you do not desire to alter the next record in the file, then the 
program terminates the CHANGE mode and returns to the Operations 
Menu. 

The DELETE Operation 

When you want to remove one or more records from a file, you use the 
DELETE option. This directive is effectively opposite to the INSERT 
directive. When you remove a record using this command, the space 
originally occupied by that record in the file is physically recovered as all 
of the data above that point is moved "down." (The length of the file is 
thus shortened, making room for new data, if desired.) 

When the DELETE option is selected, you are first reminded of the 
highest numbered record in the file. Then you specify the number of the 
record you wish to remove. You can give directives to have a single 
record eliminated or an entire group taken out. This is how the display 
would appear when deleting a single record from a file: 

-~ DELETE RECORD<S> 

LAST RECORD IN FILE IS: 3 

FIRST RECORD TO PROCESS? 
2 

LAST RECORD TO PROCESS? 
2 



26 DATA BASE MANAGEMENT FOR THE APPLE 

Note that the "first" record and "last" record number are the same 
in this example, since only a single record is being removed. 

If you wanted to remove an entire block of records, then you would 
indicate a range of record numbers. When indicating that a group of 
records is to be deleted, you must always proceed from lower numbered 
to higher numbered records. As a precaution against accidental erasure 
of records due to operator error, the program does not accept record 
number inputs that do not follow this order. 

Furthermore, since the delete operation can be considered critical 
(it could "undo" a lot of work if invoked by accident!), you must confirm 
the record numbers being deleted before the operation actually occurs. 
Thus, after you have specified which record (or records) is (are) to be 
removed, the program asks for confirmation of your directives in the 
format shown here: 

YOU HAVE REQUESTED THE DELETION 
OF RECORD NUMBER<S> 2 THROUGH 2 

IS THIS CORRECT <YIN>? 

If you respond (Y)es for "affirmative" here, then the deletion 
operation is performed. All higher numbered record(s) left in the file 

FIELD 1 

FIELD 2 
RECORD N t---F-lEL-D-3--

RECORDN+3 
BECOMES 

RECORDN+1 

FIELD 4 

FIELD 1 
FIELD 2 

FIELD 3 

FIELD4 

Fig. 3-5. The DELETE operation removes entire records from a file. 



OPERATING THE DATA BASE PROGRAM 27 

after the unwanted records have been removed are moved "down" to fill 
in the vacated area. Then the system displays how many records remain 
in the file. Thus, if you initially had three records in the file and you 
deleted a single record, you would see the message 

LAST RECORD IN FILE IS: 2 

appear on the screen. 
If you reply to the confirmation query with anything other then 

(Y)es, the deletion operation is aborted. Control then returns to the 
Operations Menu, as it does when a deletion operation has been 
completed. 

It is also worth noting that the DELETE option can serve a special 
purpose when formatting files. Suppose you wish to establish a whole 
group of files, all of which have exactly the same record format. As you 
already know, the first step you have to take is to define the file format. 
However, once you have done that for one file , you can save yourself a lot 
of work by using the DELETE option. When you have finished working 
with the first file-say after filling it up with data-you save it on a 
diskette (that process will be explained later). Then you select the 
DELETE option and delete all of the records in the current, memory­
residentfile! Presto! You are instantly ready to start loading data into 
another, identically formatted file. (You will see later that you can save 
this "new" file on diskette under a different name, etc.) There is no need 
to go through the file-defining process again, since you already have 
precisely the file format you need residing in memory. Remember this 
little tip. It can save you some work in future applications! 

The LIST Operation 

Up to this point, I have been describing commands that let you construct 
a file and put data into it, alter the data or remove it. But, if that were all 
you could do, you soon would get pretty bored with your data base 
management program. The program would be just about useless, too. 
After all, why stash all that information in a computer file, if the 
machine won't save you some work! 

It will. The LIST option is the first directive to be described that can 
really show you some practical results. Basically, what it does is enable 
you to list all or parts of a data file. It also gives you control over which 
fields in a record are to be outputted when performing a list operation. 
As you will soon see, these capabilities can provide some very practical 
results. 

When first selected, you are informed of the highest numbered 
record in the file and asked which records you want to see. The initial 
display has the format illustrated on the top of the next page. 



28 DATA BASE MANAGEMENT FOR THE APPLE 

--- LIST RECORDCS> 

LAST RECORD IN FILE IS: 3 

FIRST RECORD TO PROCESS? 
2 

LAST RECORD TO PROCESS? 
2 

In the example display, only one record is being called for, so the 
"first" and "last" record numbers to be processed are identical. If a group 
of records was desired, then the numbers would be different. The "last" 
record number must not be less than the "first" or the program assumes 
an error has been made by the user, whereupon the program asks the 
operator to try again. 

As will be illustrated later in this book when practical examples of 
this program's usages are demonstrated, the ability to output a given 
range of records is highly useful. There are many times when dealing 
with a file of data that only a portion of the file's contents are desired. The 
operation of this LIST option provides the flexibility required in this 
regard. 

Further flexibility in the outputting of information is garnered 
from the next step in the listing process. At this point, the program will 
query: 

WANT TO SUPPRESS ANY FIELDS <YIN>? 

Responding affirmatively here (by typing the letter Y for yes) 
results in the program displaying the prompt: 

INPUT FIELDCS> TO BE SUPPRESSED. 
USE FIELD NUMBERS CNOT NAMES>. 
END YOUR LIST BY INPUTTING THE # 0. 

Now you can specify the field numbers whose contents you do not 
want to have outputted during the list operation. You will undoubtedly 
find yourself using this feature quite often. For instance, when you just 
want to extract specific information. (Suppose you have a file wherein 
each record holds a person's name, street address, city, state, zip code, 
telephone number, and perhaps several other fields containing 
amplifying data. You decide it would be helpful if you had a convenient 
list of all the people in this file and their phone numbers, without any of 
the other data. Fine, you just suppress the outputting of all the fields 
except for the "name" and "telephone number" fields. There you are!) 

After you specify which fields are to be suppressed (if any), the 
program asks the following (see top of next page): 



OPERATING THE DATA BASE PROGRAM 29 

SUPPRESS RECORD NUMBERS CYIN>? 

This query provides the option of having the actual, physical record 
number displayed along with the information being outputted for each 
record. (This "physical" record number is based on the actual position 
within the file that the record occupies at the time the listing takes 
place.) 

JOHN DOE 
ABC INC. 
WORK ST. 
HARDVILLE 

Fig. 3-6. The LIST option can be used to print labels by suppressing fields that are 
not needed in the listing. 

The ability to list record numbers is important when one plans to 
edit or modify files or to arrange data within files into groups. If you have 
a mailing list file containing many names and addresses, you need to 
know the actual record numbers so that you can quickly and easily 
update or delete specific records. 

However, at other times you may not want to have the record 
numbers listed. For instance, if you just want a list of names and 
telephone numbers, then you don't need to know the record numbers. In 
fact, they would just clutter up your listing, so you can elect not to have 
the record numbers displayed. 

Next you have the option of having information listed on your video 
monitor or your system printer. You select the desired output device by 
responding to the query: 

OUTPUT TO SCREEN OR PRINTER CS/P)? 

appropriately. 



30 DATA BASE MANAGEMENT FOR THE APPLE 

If you elect to have the information listed on the screen, you will 
have an additional option as the information is displayed. Due to the fact 
that information is presented to the screen rapidly, the program stops 
outputting information after the data in each record is displayed. You 
are given as much time as you like to review the information. When you 
want to go on to the next record, you press any key except the RETURN 
key. Pressing the RETURN key when listing to the screen aborts the 
mode. This allows you an easy "out" if you tire of viewing records on the 
screen. 

When information is listed on a printer, the entire range of records 
specified is outputted without interruption. 

Regardless of which device the information is outputted to, the 
listing will be preceded by a "header." It shows the format of the listing 
by giving the field number, field name, its size (number of characters 
permitted in the field) and type (whether (A)lphanumeric or (N)umeric) 
for all the fields that will be outputted. This information is presented as a 
reminder to the user of just what data are contained in each field. It is also 
useful information to have when performing editing of the data base. 

(Note: If you ever "forget" the format you are using in a particular 
file, just use the LIST option to output any record. The "header" obtained 
when this is done will refresh your memory in short order. Just be sure 
you don't suppress any fields when using the LIST option for this 
purpose!) 

Here is what the header and a single record might look like when 
using the LIST option to output data to a printer: 

FORMAT BY FIELD #, NAME, SIZE, TYPE: 

1: NAME 
2: STREET 
3: CITY 
4: STATE 
5: ZIP CODE 
6: TELEPHONE 
7: CATEGORY 
8: CODE 

JOHN DOE 
123 PLEASANT STREET 
ANY TOWN 
NJ 
07777 
(201) 999-1234 
PROSPECT 
ABCD 

20 A 
30 A 
12 A 

2 A 
5 A 

14 A 
8 A 
4 A 

OK, that is the basic LIST operation. Now let us move on to learn 
about a sophisticated variation . ... 



OPERATING THE DATA BASE PROGRAM 31 

The FIND Operation 

Often, when dealing with a sizable data base, it is desirable to be able to 
"search" for items of specific interest. One way to conduct such a search 
is to list all or part of a file, then use the old "eyeball" technique. But 
really now, why did you get a computer? Why, to have it do that kind of 
looking for you! 

The FIND option allows you to search any field in the data base for 
information of interest. This option starts off just like the previously 
described LIST option. When invoked, the program first informs you of 
the highest numbered record in the file. It then asks for the range of 
record numbers to be processed. That is, over what group of records is 
the search operation to be conducted.You can specify the examination of 
a single record or any continuous group. When specifying the latter, you 
must give the lowest numbered record, then the highest numbered 
record to be scanned. 

Then, just as in the LIST option, you are given the opportunity to 
suppress the output of selected fields, if desired. Fields to be suppressed 

RECORD 
ITEM P-1406 

#1 COLOR RED 

PRICE 2.98 
P-1406 
RED 

ITEM R-1162 2.98 

#2 COLOR BLUE 

PRICE 1.05 

ITEM S-1055 

#3 COLOR RED 

PRICE 2.53 

ITEM T-4417 

#4 COLOR ORANGE jSj':!r!L l'.l:.MtT CJ ~t 

PRICE 1.44 

ITEM F-8628 

#5 COLOR GREEN 

PRICE 1.39 

ITEM A-9845 
#6 COLOR RED 

PRICE 3.51 

Fig. 3-7. The FIND option can locate items of particular interest.. For example, in the 
inventory file above, all items of the file having the color red have been located 
by the FIND option. 



32 DATA BASE MANAGEMENT FOR THE APPLE 

are indicated by their position (number) within the record. The field 
number ~ is used to terminate the specification process. 

And, once again, you are given the chance to suppress the 
displaying of record numbers when data is outputted, if desired. 

Once all of these options have been decided, exactly as may be done 
for the LIST operation, the program proceeds to ascertain what is to be 
sought in the data base. It starts this process by asking: 

SEARCH FIELD NAMED? 

You input the user-assigned name given to the field that is to be 
searched within each record. For instance, in a mailing list application, 
fields might be named Name, Address, City, State, and so forth. If you 
were going to look for records containing addresses in a particular state, 
then you would specify the field named State at this point. 

Suppose, however, that you are forgetful or careless. You cannot 
remember the exact name of a particular field or you misspell a field 

· name. As the saying goes, "no problem." If the program receives a name 
it does not recognize, it will tell you what the valid field names are for the 
current file. Here is how the display might appear if you inputted a field 
name that did not exist in a file: 

NO FIELD NAMED: STATT 

VALID FIELD NAMES ARE: 

NAME 
ADDRESS 
CITY 
STATE 
ZIP CODE 
TELEPHONE 
CATEGORY 
CODE 

You would then be given another opportunity to specify a valid field 
name. 

Once an acceptable field name has been given, the program asks: 

LOOK FOR A MATCH WITH? 

You can then enter any string that you want the program to look for 
anywhere in the specified field. 

Suppose, for instance, that you wanted to locate all the entries in a 
mailing list that were in the state of California. Assuming that you were 
abbreviating the state using the official post office abbreviations, you 
could request that the program look for a match with "CA" in the field 
named State. 



OPERATING THE DATA BASE PROGRAM 33 

Once this specification had been made, the program would proceed 
to examine the specified field in each record in the file (over the range of 
record numbers requested). It would look for a match anywhere in the 
field with the character string (CA in this hypothetical example) 
stipulated. If a match was found, then the contents of the entire record 
(less any suppressed fields) would be displayed. 

As in the case of the LIST operation, if the data is being outputted to 
a video display, then the program pauses after each record has been 
displayed. It remains halted until the user presses any key except 
RETURN. If the RETURN key is depressed, the FIND operation is 
terminated. Pressing any other key causes the program to continue its 
search. 

On the other hand, when a printer is being used, the program will 
proceed to search the entire range of records requested without 
interruption. Data is outputted to the printer whenever an appropriate 
match is found. 

The "header" at the start of output during a FIND operation is 
slightly different than during the LIST procedure to provide some 
differentiation. Here is how the output might appear in a typical 
application of the FIND operation. (This example assumes a record 
format identical to that used for illustrating the LIST operation. 
However, it is further hypothesized that the user elected to suppress the 
printing of fields 2, 3, 5, 6, 7, and 8.) 

SEARCH OF FIELD NAMED: STATE 
IN RECORDS 1 THROUGH 20 
FOR THE STRING: CA 

FORMAT BY FIELD #, NAME, SIZE, TYPE: 

1: NAME 
4: STATE 

( 8 ) 
HENRY SOMEBODY 
CA 

( 14 ) 
JANE SOMEONE 
CA 

20 A 
2 A 

The FIND option is a powerful command. Some ramifications and 
examples of its use in specific applications will be highlighted later in 
this book. 

The SORT Operation 

Perhaps the most powerful capability of this data base management 
program, in the opinion of many users, is its ability to order the contents 
of a file. The user can give directives to have all or part of the file 



34 DATA BASE MANAGEMENT FOR THE APPLE 

arranged in alphabetical order (or numerical order, when dealing with 
numeric fields). The ordering process is based on the contents of a 
specified field. 

The ability to specify the field on which ordering is to take place as 
well as the ability to select what group of records is to be examined within a 
file combine to form a means of providing what, in computerese, is 
sometimes referred to as multi-key sorting. More on this aspect later. 

PICKLES APPLES 

ONIONS BANANAS 

APPLES CARROTS 

CRACKERS CRACKERS 

ORANGES ONIONS 

BANANAS ORANGES 

CARROTS PICKLES 

TURKEYS STEAKS 

STEAKS TURKEYS 

Fig. 3-8. The SORT option enables records to be arranged according to the 
alphabetical (or numeric) contents of a specific field. 

This option also starts off similarly to the LIST and FIND 
operations. The user is immediately informed of the highest numbered 
record in the file, then asked for the range of records to be processed. The 
range specified must cover at least two records. Specify the lowest 
numbered record, then the highest. 

Since the SORT operation only arranges the file within the memory 
of the computer, it is not necessary to specify any output options.You use 
the LIST option after a sort in order to see the ordered file or any section 
of it. 

Once the range of records to be sorted has been indicated, the 
program queries: 

SORT ON FIELD NAMED? 

Just as when using the FIND option, you enter the name assigned to 
the field of interest. (That is, the name created by the user when the file 
format was established.) If the program does not recognize the name 
inputted at this point, then it lists the valid field names and allows you to 
try again. 

Once a valid field name has been accepted, the program proceeds to 
sort the indicated records according to the contents of the specified field. 

/ 



OPERATING THE DATA BASE PROGRAM 35 

During the sort operation, a message having the format illustrated here 
will be displayed: 

SORTING RECORD NUMBERS 1 THROUGH 30 

This alerts the operator to the fact that the computer is busy. A sorting 
operation can take from just a few seconds to a number of minutes. The 
actual time required is a function of the number of records being sorted, 
as well as the length of the field on which the sort is being conducted and 
how ordered the records are when the sort is initiated. 

If the field upon which the sort is based is alphanumeric, then the 
records are ordered according to a character-by-character comparison 
of the entire field. The character ranking is based on the ASCII 
character code used internally by the computer. Records will be 
arranged in ascending character-code order. 

If the field upon which the sort is based is numeric, then the records 
are ordered according to the signed numerical value of the contents of 
the field. Numeric sorts may take slightly longer, on average, than 
alphanumeric sorts. 

When the sorting procedure has been accomplished, the program 
returns to the Secondary or Operations Menu.Use the LIST option if you 
wish to examine the file after a SORT operation. 

The TALL y Operation 

The final "operation" provided in this data base management program is 
referred to as the TALLY option. It enables a user to take a tally 
(perform a summing operation) on a designated field over a range of 

1 

2 

3 

4 

5 

6 

7 

FIELD "1 
(alphanumeric) 

T 
I 

1 
I 

I 
I 
I 
I 

i 
l 

FIELD "2 FIELD ,,3 FIELD .. 4 
(alphanumeric) (numeric) • • • 

i 17 i 
T 10: 
l sl 
I ai I 
I 

14_1_ I 

T 19 I 
i I 

l 111 

841 
Fig. 3-9. The TALLY option sums the contents of a specified numeric field in a 
group of records. 



36 DATA BASE MANAGEMENT FOR THE APPLE 

records. Only numeric fields may be tallied. If a user attempts to perform 
a tallying operation on an alphanumeric field, the directive will be 
declined by the program. 

Here is how the screen would appear at the beginning of a typical 
TALLY application: 

- TALLY RECORD<S> -

LAST RECORD IN FILE IS: 30 

FIRST RECORD TO PROCESS? 
1 

LAST RECORD TO PROCESS? 
5 

In this example, the user has specified that record numbers 1through5 
are to be included in the tallying operation. 

Next the user must respond to the prompt: 

TALLY ON FIELD NAMED? 

Note that the user-assigned name of a numeric field must be supplied. 
Failure to give a valid field name results in the program reviewing 

the field names used in the current file. The user is then given another 
opportunity to input a valid field name. 

Failure to specify a field name corresponding to a numeric (type) 
field, results in an appropriate reminder message. Since it is possible for 
a user to attempt to tally in a file with no numeric fields in it, a failure in 
this regard causes the program to default back to the Operations Menu. 
The user can then review the file format (using the LIST option, if 
necessary) and take appropriate steps to reinitiate the TALLY 
operation. 

When a valid name for a numeric field has been verified, the 
program proceeds to sum the values in that field over the range of 
records requested. When the sum has been obtained, the result is 
displayed in the following format: 

TALLY FOR FIELD NAMED NUMBERS 
IN RECORD<S> 1 THROUGH 5 IS: 

226179 

PRESS ANY KEV TO CONTINUE •••• 

The user can view the result on the screen as long as desired. When the 
user has finished evaluating the information, a press of any key 
concludes the TALLY operation. The program then returns to the 
Operations Menu to await a new directive. 



OPERATING THE DATA BASE PROGRAM 37 

Saving a File on a Diskette 

Whenever you want, you can save a copy of any formatted data file on a 
diskette. It is a good idea to get into the habit of doing this regularly. 

For instance, suppose you were constructing a large data base. One 
with, say, several hundred records. It would be a good idea to stop after 
appending every 50 or so records, save the file on a diskette, then 
continue adding to the file. This type of procedure provides a measure of 
security against losing your data due to a power failure or other mishap. 

You may also want to save copies of files arranged (sorted) by 
several different keys (field contents). 

And, you might be interested in keeping copies of files in 
chronological order.You can do this by making a new copy of a file at the 
end of every week or other suitable period of time. 

It is easy to make a copy of a memory-resident data file at any time 
using this program. 

If the program is displaying the Operations Menu, you select option 
number 9 (Next Menu) to change the system to the Primary Menu. 

Fig. 3-1 o. Data files may be transferred from the computer's memory to a diskette 
for long-term storage. They can be restored to memory from the diskette whenever 
desired. 

/ 



38 DATA BASE MANAGEMENT FOR THE APPLE 

Once you have the Primary Menu on the display, just select option 
number 4: WRITE FILE TO DISK. 

The program will respond with the following display: 

--- SAVE FILE TO DISK --­

SPECIFY FILE NAME <MAX 30 CHARACTERS>: 

Type in the name you want to assign to the file when it is residing on the 
diskette. Make sure you have a diskette in your drive on which to save the 
file. Then, press the RETURN key. That is all there is to it. The program 
will store the current memory-resident data base file onto the diskette 
under the name you have assigned. 

At the conclusion of the disk-write operation, the program returns 
to the Primary Menu. 

If you should forget to place a diskette in your disk drive, if the 
diskette is full or write protected, or a system malfunction should occur 
during a disk input/output (I/0) operation, then the operation will be 
halted. You will then see the following message displayed: 

I/O ERROR. RECOMMEND CHECKING DISK. 

PRESS ANY KEY TO RETURN TO MENU •••• 

In such a case, ascertain the reason for the failure, then press a key to 
return to the Primary Menu. If you were attempting to save a file to a 
diskette, it would still be in memory (provided the I/0 failure wasn't 
caused by something catastrophic, such as a power failure). You can then 
simply correct the reason for the initial failure and try the procedure 
again. 

You will want to remember to be careful when you assign names to 
files stored on a diskette. The data base program has been designed to 
overwrite any file on the diskette having the same name you assign when 
selecting the option. This was done so that you could keep updating the 
same file, if desired. If you want to have several copies of the same file on 
a diskette, then assign a different name each time you save it. 

Obtaining a Catalog of a Diskette 

If you want to check the contents of a diskette, just select choice number 
5: READ DISKETTE CATALOG of the Primary Menu. Doing so brings 
up the catalog of the diskette currently in the active drive. It is displayed 
in the standard disk-operating system (DOS) format such as that shown 
on the top of the next page. 



OPER.ATING THE DATA BASE PROGRAM 

DISK VOLUME 0 

A DATA BASE PROGRAM 
T MAIL LIST 

PRESS ANY KEY TO RETURN TO MENU •••• 

39 

When you are through examining the disk catalog, press any key to get 
back to the Primary Menu. 

It is a good idea to call on this option whenever you are in doubt 
about the contents or status of a diskette. Using this before you attempt to, 
say, write to a diskette, can tell you whether a file name has been 
assigned previously. It can also be used to estimate how much room you 
have left on a diskette, etc. Remember, when in doubt, take a look at the 
catalog and find out! 

Reading a Data File from a Diskette 

Of course, one of the powerful features of a computerized data base 
management system is its ease of use. You can design a structure for a 
data base. Fill it up with data. Manipulate the information to extract 
what you need at the present time. Then save its current contents on a 
diskette. Anytime you want to pick up where you left off, just load the 
data back into memory from the diskette and continue your work! 

You already know how to save a data file on a diskette. Restoring a 
previously saved file to memory is just as easy. You just select option 
number 3: READ FILE FROM DISK of the Primary Menu. Doing so 
brings up the prompt: 

--- READ FILE FROM DISK -

SPECIFY FILE NAME <MAX 30 CHARACTERS>: 

It does, that is, unless you happen to already have a data file residing in 
memory! 

Reading in a data file when you already had a file in memory would 
overwrite that data. Thus, if, when you select this option, there is already 
a file in memory, the program will ask: 

DO YOO NISH TO ERASE THIS FILE <YIN>? 

This serves as a reminder that you already have an active file. If you 
respond (N)o to this query, then the program returns to the Primary 
Menu so that you can take action, say, to save the current file on a 
diskette. 

If, on the other hand, you are through working with a particular file 
in memory and want to read in another file in order to work with it, then 



40 DATA BASE MANAGEMENT FOR THE APPLE 

you would respond (Y)es to the above query. Doing so will result in the 
present memory-resident data file being erased and the following 
message appearing briefly on the screen: 

FILE HAS BEEN ERASED •••• 

The program will then return to the Primary Menu and you must 
reinstate the original directive (to read a file) again! (Remember, this 
sequence has been designed as a safeguard to prevent a user from 
inadvertently overwriting a file that was present in memory.) 

Assuming that no file was in memory when option 3 was selected, 
the user would simply type in the name of the file desired when the 
prompt 

- READ FILE FRDl'I DISK -

SPECIFY FILE NA1'E OtAX 3S CHARACTERS>: 

came up on the screen. After making sure the proper diskette was in the 
active drive, the RETURN key would be pressed to initiate the transfer 
process. As soon as the new data base has been successfully loaded into 
memory, the program returns to the Primary Menu. 

Should any kind of 1/0 malfunction occur, the "1/0 ERROR" 
message previously described would appear. The read operation would 
be terminated. Pressing any key would return the program to the 
Primary Menu. After action had been taken to clear up the 1/0 problem, 
the user would simply select the disk-read option to try the procedure 
again. 

Erasing a Data Base File 
from Memory 

After working with a data base in memory, you may decide that you 
want to construct a new data base. If this data base is to have a new 
format, then you will need to select option number 2 of the Primary 
Menu. Before you can do this, however, you must erase the current file 
from memory. This is accomplished by selecting option 9: ERASE FILE 
FROM MEMORY of the Primary Menu. 

As a protective measure to prevent accidental erasures, you must 
authenticate (verify) this option before the file will actually be deleted 
from memory. You do this by responding affirmatively to the following 
query: 

DO YOU WISH TO ERASE THIS FILE <VIN>? 



OPERATING THE DATA BASE PROGRAM 41 

If you do not respond with (Y)es here, then the program assumes a menu 
selection error was made. The menu is redisplayed. 

If you do respond with (Y)es, then the current file is erased from 
memory and the message 

FILE HAS BEEN ERASED •••• 

is briefly displayed before the program returns to the Primary Menu. 

Leaving the Data Base 
Management Program 

When you are through working with the program, you can return to the 
system's DOS executive by selecting option 6: EXIT TO DISK 
EXECUTIVE of the Primary Menu. 

However, since puttering around with the DOS executive can wipe 
out any data base file currently in memory, this option, too, must be 
verified before it is actually executed. Thus, it is necessary to respond 
appropriately to the verification message: 

RETURNING TO DISK EXECUTIVE DESTROYS 
ANY DATA CURRENTLY IN MEMORY. 

IS THAT OK <VIN>? 

If you do not confirm the option, the Primary Menu is redisplayed. 
Confirming it causes the data base program to be terminated. You 
should then see the DOS prompt appear on the display. 

Deleting Data Base Files 
from a Diskette 

You remove data base files using your DOS executive. Use the DELETE 
command followed by the name of the file that you wish to have purged 
from the diskette. You can also COPY or RENAME your data base files 
using the DOS executive. Remember, these data base files are simply 
configured as "T" (text) files as far as the DOS is concerned. 

Try It! 

That is the best way to become thoroughly familiar with the program. To 
· get more ideas of how to apply your newfound computing power to 
practical applications, study and adapt the examples provided later in 
this book to serve your own personal needs. 

The Data Base Source Listing follows on pp. 42-47. 



42 DATA BASE MANAGEMENT FOR THE APPLE 

APPLE DATA BASE MANAGER: 
SOURCE LISTING 

GOTO 4filfilfi!i21 
2 REM <C> COPYRIGHT 1982 
3 REM SCELBI PUBLICATIONS 
11211211!1 IF AA$ = "" THEN H'.!3121 
112111!1 GOSUB 5998121: PRINT "FILE ALREADY DEFINED •••• ": GOSUB 59990: PRINT "E 

RASE CURRENT FILE BEFORE REDEFINIMG. ":I = 2 0filfil : GOSUB 59971/J 
1r!J2r!J 
Hl31!l 
11121111 
1111!1 
112121 
113121 

GOTO 4121121121121 
CLEAR : GOSUB 1900 
GOSUB 59980 
PRINT "NAME FOR FIELD 

LC = 10: GOSUB 50010 
A$ <X> = !oJ$ 

12111121 GOSUB 5999fil 

# ";X + 1;" <MAX 10 CHARS>?": PRINT 

121121 PF:INT "MAXIMUM # OF CHARACTERS IN FIELD ";x + 1; "?": PRINT "<LIMIT I 
S 4121 CHARACTERS TO A FIELD)": PRINT 

1220 LC = 2:LD = 1: GOSUB 5101 0 
1231!1 IF W < 1 OR W > 41!1 THEN E$ = "OUTSIDE VALID RANGE. RE-ENTER.": GOSUB 

598121121: GOSUB 5985fil: GOTO 122 0 
124111 IF B + W > 236 THEN E$ = "RECORD OVERFLOW. REDUCE FIELD LENGTH.": GOS 

59800: GOSUB 59850: GOTO 1220 
1250 ACX> = W: GDSUB 59990 
126121 PRINT "IS FIELD ";X + 1;" ALPHA OR NUMERIC CAI N)?": PRINT 
1270 LC = 1: GOSUB 50010 
1280 IF W$ "A" THEN ACX + 40) = 0: GOTO 1310 
1290 IF W$ < > "N" THEN GOSUB 5955fil: GOSUB 598fil0: GOSUB 59850: GOTO 127 

13~2lf!J 

1310 
132QJ 
1331!.I 
134121 
135121 
136111 
137121 

l!l 
ACX + 40) 1 
B = B +ACX>: IF B = 236 THEN 1400 

IF X > 38 THEN 1400 
GOSUB 5998111 
PRINT "INPUT ANOTHER FIELD CY/N)?": PRINT 

LC = 1: GOSUB 5101!11QI 
IF WS "Y" THEN X = X + 1: GOTO 1100 
IF W$ < .,_ "N" THEN GOSUB 59550: GOSUB 5981210: GOSUB 59850 : GOTO 135 

121 
14121!!1 GOSUB 5998121 
1411!1 PF:INT "YOU HAVE COMPLETED DEFINING THE FIELDS.": GOSUB 59991!1 
1420 A(80) = X + 1:A<81) = 0 
1430 C = FRE <X> - 10~!1:A<83) = B:B INT CC I B>: IF B > 999 THEN B 9 

99 
144111 PF: INT "THEF:E IS ROOM FOR "; B;" RECORDS.": A (82) = B 
1451!1 I = Hll21fil: GOSUB 5997121:AA$ = "D": GOTO 4112100 
1900 DIM A<83),A$(39),BC39),8$C999): RETURN 
212112111J GOSUB 291!if'.I : IF G. = 1 THEN G = 0: GOTO 411!11!.10 
2100 B = 1:X = 0:BS<AC81J> = "" 
22121!!1 GOSUB 5998121 : AS = STRS CCA C81 > > + 1>: PRINT TAB ( 9>; "--- APPEND REC 

ORD<S> ---": GOSUB 59990 
221.1!1 GOSUB 28filJ!I 
2220 8$(A(81)) = BS<AC81)) + W$ 
2230 IF ex + 1) = A<80) THEN 2250 
2240 B = B + ACX>:X = X + 1: GOTO 2200 
225 0 AC81l = A<81) + 1 
2261!1 GOSUB 5999121: PRINT "CONTINUE WITH NEXT RECORD CY/N)?": PRINT 
2270 LC = 1: GOSUB 50010 
228121 IF W$ = "Y" THEN 21111210 
2290 GOTO 4100 0 
280121 PRINT "RECORD# ";A$;" MAX CHARS= ";A<X>;" "; 
281111 IF ACX + 4 0 > = 0 THEN PRINT " ALPHA": GOTO 2830 
282121 PR I l\IT " NUMERIC" 
283121 PRINT: PRINT: PRINT "FIELD# ";X + 1;" NAMED: ";A$(X) 
284121 PR I NT "------------ - - -------------------------": GOSUB 59990 
2El51!1 LC = A<X>: IF ACX+ 41!1> < > 0 THEN LO= 0: GOSUB 5112110: GOTO 2870 
2860 GOSUB 5001 0 
287121 IF LEN CW$l < A<X> THEN FOR I = 1 TO ACXJ - LEN CW$) :W$ = W$ + " 

": NEXT I 



OPERATING THE DATA BASE PROGRAM 43 

2881!1 RETURN 
29elf!I G = Iii: IF A <81 > > = A <82> THEN G = 1: GOSUB 59980: PRINT "FILE IS FU 

LL I I ": I = 1 lilQl0: GOSUB 59970 
29 ll!l RETURN 
3JilJZJJil GOSUB 291illil: IF G = 1 THEN G = iii: GOTO 411111il1il 
3Qll0 GOSUB 581Mil: IF G = l THEN G = lil : GOSUB 5999Jil: PRINT "USE THE APPEND 

ROUTINE •••• ":!= llillillil: GOSUB 59971!1: GOTO 411i100 
3100 GOSUB 391!10: GOSUB 59Jilf!I: GOSUB 59990 
311 Iii PR I NT " INSERT BEFORE RECORD NUMBER? ": PR I NT 
3120 LC = 3: LD = 1: GOSUB 5HJHI: IF W = 111 THEN 41 Jil00 
313!il IF W < 1 OR W > A (81> THEN GOSUB 59560: GOSUB 59800: GOSUB 5985!il : GOTO 

314t!f 
3150 
3161!1 
31710 
318iil 
3201ZJ 
321t!J 
322,D 
323f!J 
39Jil!il 
41ill!llil 
4!illlil 
4 11120 
4Jil3Jil 
41il4Jil 
405!1l 
4 1il6Jil 
41iillil 
4110 
412iil 
4131il 

4141!1 
415111 
4161il 
4171Zl 
418111 

419Jil 
42111111 
42 ll!J 
422~ 

423l!J 
4240 
425J!J 
491illil 
5Jil00 
51f!IJ!J 
5110 
512t!J 

5130 
514111 
52f!J0 

5210 

571ill!l 
571(!1 
5721!' 

312QJ 
FOR I = A<Bl> TOW - 1 STEP - 1:B$ ( ! + 1) = B$CI>: NEXT I 

B = l:X = lil:A$ STRS <W>:B$(W - 1> = 
GOSUB 39!illil: GOSUB 5999!il: GOSUB 28!illil 

B$CW - 1> = B$(W - 1> + W$: IF <X + 1) = A<80) THEN 3200 
B = B + A< X> :X = X + 1: GOTO 3160 
A<81> = A <81) + 1: GOSUB 29~il: IF G = 1 THEN G = 0: GOTO 41 000 

GOSUB 59991!1: PR I NT "CONTINUE INSERTING RECORDS < Y / N >?": PR I NT 
LC = 1: GOSUB 51il1H1!l: IF W$ < > "Y" THEN 4101il!11 
W = W + 1: GOTO 314111 

GOSUB 5998121: PRINT TABC 9>;"--- INSERT RECORD <S> ---":RETURN 
GOSUB 5800: IF G = 1 THEN G = 0: GOTO 41000 
GOSUB 491iJJZJ : GOSUB 69Jillil 
GOSUB 5999111: PRINT "INPUT FIELD CS) TO BE CHANGED." 
GOSUB 681il!iJ 
FOR I = Iii TO 39: IF B<I> < > 0 THEN G 
NEXT I: IF G = 1 THEN G = 0: GOTO 4100 
GOTO 411illi1Jil 
GOSUB 49Ji1Jil: GOSUB 59Jil!il: GOSUB 5999!il 
PR INT "BEGIN CHANGES WITH RECORD NUMBER?": PR I NT 

LC= 3:LD = 1: GOSUB 511i11!il:Z = W: IF Z = 0 THEN 41!ilf!l0 
IF Z < 1 OR Z > A C81> THEN GOSUB 59560 : GOSUB 59800: GOSUB 59850: GOTO 

4121il 
B = l:X 0:A$ STR$ CZ> 

IF B<X> = Iii THEN 4200 
GOSUB 491iJJZJ: GOSUB 59991!1: GOSUB 28111f!l 

BSCZ - 1) "(" + B$(Z - 11 + ")" 
BS(Z - 1) LEFT$ (B$CZ - 1>,BI + W$ + MID$ C8$CZ - 11,B +ACX> + 1 
) 

B$(Z - 1) MID$ CB$CZ - 1>,2, LEN (8$CZ - 111 - 21 
IF ex + 1> = A(8f!I) THEN 4221!1 

B = B + A<X>: X = X + 1: GOTO 415f!l 
IF Z = AC81) THEN 41001!1 
GOSUB 59991!1: PRINT "CHANGE NEXT RECORD CY IN>?": PRINT 

LC = 1: GOSUB 5 f!l!il111I: IF W$ < > "Y" THEN 41Ql00 
Z = Z + 1: GOTO 414f!l 

GOSUB 5998111: PRINT TAB ( 9>; "--- CHANGE RECORD CSJ ---": RETURN 
GOSUB 58101!1: IF G = 1 THEN G = 0: GOTO 411ilii10 
GOSUB 599810: PRINT TAB( 9>;"--- DELETE RECORDCSJ ---": GOSUB 591110 
GOSUB 571110: IF G = 1 THEN G = f!l: GOTO 410Jill11 
GOSUB 5998111: PR I NT "YOU HAVE REQUESTED THE DELETION": PR I NT "OF RECD 

RD NUMBER CS> "; Y;" THROUGH "; Z 
GOSUB 59991!1: PRINT "IS THIS CORRECT CY IN>?": PRINT 

LC = 1: GOSUB 5011!11!1: IF W$ < > "Y" THEN 5HJ0 
F = Z - Y + 1: IF Z < AC81) THEN FOR I= Z TO AC81>:B$CI - Fl = 8$(1 
>: NEXT I 

FOR I= 1 TO F:AC81) = AC81> - 1:B$CAC81)) = "": NEXT I: GOSUB 5900: 
GOTO 4100111 

G = (!I: GOSUB 5999f!J: PRINT "FIRST RECORD TO PROCESS?": PRINT 
GOSUB 579f!l: IF W = 0 THEN G = 1: RETURN 
IF W > = 1 AND W < = A<81) THEN 5741!1 

5730 GOSUB 5956C!I: GOSUB 59801!1: GOSUB 5985!!1: GOTO 571 0 
5741il Y = W: GOSUB 59991!1: PRINT "LAST RECORD TO PROCESS?": PRINT 
5750 GOSUB.5790 : IF W = 0 THEN G = 1: RETURN 
576111 IF W < Y OR W > A (81 > THEN GOSUB 59560: GOSUB 5981110: GOSUB 59850: GOTO 

5750 
577111 Z = W: RETURN 
5790 LC = 3:LD = 1: GOSUB 51010: RETURN 



44 DATA BASE MANAGEMENT FOR THE APPLE 

5811@ G "' 0: IF A C81> = QI THEN G = 1: GDSUB 599811': PRINT "FILE IS EMPTY! ! ": 

581111 
59J!JJ!• 

61111110 
61Qll!I 
611111 
62Ql11' 

I = 500 : GDSUB 59970 
RETUF<N 
GOSUB 59990: PRINT "LAST RECORD IN FILE IS: ";A<Sl>: I "' 500: GOSUB 5 

997111: RETURN 
GOSUB 58111111: IF G = 1 THEN G = 1Zi: GOTO 411Zi11111J 
GOSUB 5998111: PRINT TAB C 9); "--- LIST RECORD <S> ---": GOSUB 5900 
GOSUB 5700: IF G • 1 THEN G = 0: GOTO 41000 
GDSUB 6511112! 

621 1!1 GDSUB 5998111: IF C = 1 THEN PRINT CHR$ (13> + CHR$ (.4) + "PR#l": GOSUB 
5999111 

622111 GOSUB 661!112! 
6230 FDR I = Y - 1 TO Z - 1 
6240 GOSUB 67~1 
6 2 511! NE XT I 
62611' GOSUB 59990: GOSUB 59990: PRINT CHR$ (13) + CHR$ (4) + "PR#lo": GOTO 

41 1!11!1111 
65~11 GOSUB 6900: GOSUB 6910 
651 0 LC = 1: GOSUB 5 1111111111: IF W$ < > "Y" THEN 6530 
652 111 GDSUB 692 111: GOSUB 68111111 
6530 GOSUB 6930 
654111 LC = 1: GOSUB 51!111' 10: IF W$ "' "Y" THEN D ,. 1: GOTO 6560 
65513 D = (!I 
6561!1 GOSUB 694(<1 
6570 LC = 1: GOSUB 50(111(<1: IF W$ = "P" THEN C = 1: RETURN 
65813 IF W$ < > "S" THEN GOSUB 595513: GOSUB 598011': GOSUB 5985>~: GOTO 657 

659J!J 
661!111 
661(!1 
662 111 
663111 

664111 
66513 
6661!1 
67C!ll21 
6710 
6720 
673121 
674111 
675111 
6761!1 

6771!1 
6781Zi 
6 8 111111 
681111 
682(!1 

6830 
68411 
691!1111 
6910 

692111 
6930 

6941!1 

C = 0: RETURN 
PRINT "FORMAT BY FIELD#, NAME, SIZE, TYPE:": PRINT 
FOR L = 1 TO A <8111> : IF B CL - 1 > < > 0 THEN 66611! 
IF L < 111' THEN PRINT " "; 
PRINT L; ": ";A$ CL - 1>; SPC ( 30 - LEN CA$ <L - 1> > >;: IF A (L - l> < 

10 THEN PRINT " "; 
PRINT A <L - 1>;" ";: IF A (39 + L> = 1 THEN PRINT "N": GOTO 6660 
PRINT "A" 
NEXT L: PRINT : PRINT RETURN 
IF D = 1 THEN 6 720 
PRINT II ( II; I + 1; II ) It 

E = 1: FDR K = 0 TO A C811!) - 1: IF B CK) < > 0 THEN 6740 
PRINT MID$ <BS <I>,E,ACK>> 

E = E +A CK>: NE XT ~: - PRINT 
IF C < > 0 THEN RETURN 
GOSUB 5999111: PRINT "PRESS 'RETURN' TO TERMINATE •••• ": PRINT "OR": PRINT 

"PRESS ANY OTHER KEY TD CONTINUE. ••• " 
GET W$: IF W$ = CHR$ 113) THEN I = Z - 1: RETURN 
GOSUB 59980 : RETURN 
PRINT "USE FIELD NUMBERS <NOT NAMES)." 
PRINT "END YOUR LIST BY INPUTTING THE# 0.": PRINT : PRINT 

LC = 2:LD = 1: GOSUB 5l!!IHI: IF W < 0 OR W > A<80) THEN GOSUB 59560: GOSUB 
5980 0: GOSUB 59850: GOTO 6820 

IF W = 11! THEN RETURN 
BCW - 1) = 1: HTAB (1): CALL - 868: GOTO 6820 

FOR I = 11! TO 39 : B<I> = 11': NEXT I: RETURN 
GDSUB 599 8(!1: PR I NT "WANT TO SUPPRESS ANY FIELDS ( Y /N >?": PR I NT RETURN 

GOSUB 59980: PRINT "INPUT FIELD<S> TO BE SUPPRESSED.": RETURN 
GOSUB 59980: F'RINT "SUPPRESS RECORD NUMBERS (Y / N) ?": PRINT : RETURN 

GDSUB 599811: PRINT "OUTPUT TO SCREEN OR PRINTER (SIP>?": PRINT : RETURN 

7Qli110 GDSUB 58!11QI: IF G = 1 THEN G = 0: GOTO 411!11111!1 
71111111 GOSUB 5 '?'980: PRINT TAB C 9>; "--- FIND RECORD CS) ---": GOSUB 5900 
7110 GOSUB 5 700: IF G = 1 THEN G = 0: GOTO 41000 
7200 GOSUB 650 11! 
721.111 GOSUB 59980: PR I NT "SEARCH FI ELD NAMED?": PR I NT 
722 1!.1 LC = 10: GOSUB 5 1211111111 
723 0 GOSUB 7911'0: IF G = 1 THEN G = 0: GOTO 7210 
730QI GOSUB 5999111: PRINT "LOOK FOR A MATCH WITH?": PRINT 
7310 LC= A <B>: GOSUB 5C!l0 10 : GOSUB 59990 
73211' F = 1: IF B > 0 THEN FOR I = 0 TO B - 1:F = F + A<I>: NEXT I 



B 

OPERATING THE DATA BASE PROGRAM 45 

733m 

734111 

7351!J 
7400 
74l.0 
742121 
7431!1 
7441!) 
745111 
75m121 
751f!I 

791110 
7910 
792111 
793111 

794(!1 
7950 
796111 
81!Ji!J1!J 
81J!l0 
8111!1 
8120 

821211!1 
821J!I 
822f!J 
83111121 
8411H11 

841111 
842111 
843111 
844111 
845111 
8461'.! 
847111 
8480 
849111 
851!Jl!J 

851111 
852111 
85311 
85411 
85510 
8560 
857111 
858111 
911111111 
911110 
9111!1 
920111 
921(!1 
922121 
92312J 

GOSUB 5998111: IF C = 1 THEN PRINT CHR$ C13l + CHR$ <4> + "PR#l ": GOSUB 
5999111 

PRINT "SEARCH OF FIELD NAMED: ";A$<Bl: PRINT "IN RECORDS " ;Y;'' THROU 
GH 11 ; Z 

PRINT "FOR THE STRING: "; W$: GOSUB 59990: X$ = W$: GOSUB 66110 
FOR I = Y - 1 TO Z - 1 

T$ = MID$ IB$1Il,F,AIB>> 
FOR J = 0 TO AIBl - LEN IX$) 
IF X$ < > MID$ IT$,J + 1, LEN IX$l) THEN 7500 
GOSUB 6711111! 

J = AIBI - LEN IX$) 
NEXT J: NEXT I 
GDSUB 5999111: GOSUB 59990: PRINT CHR$ I 13> + CHR$ 14) + "PR#l11 ": GOTO 

411!11111!1 
B = - 1: FORK= 11! TO Al8111) - 1: IF W$ = A$1KI THEN B = K:K = Al8111) 

NEXT K 
IF B > = yJ THEN RETURN 
GOSLIB 5998111: PRINT "NO FIELD NAMED: "; W$: I = 51110: GOSUB 59971!1: GOSUB 

5999QI 
PRINT "VALID FIELD NAMES ARE:": PRINT 
FOR K = 111 TO Al80> - 1: PRINT A$WI: I = 501!1: GOSUB 59971ZJ: NEXT K 

G = 1: RETURN 
GOSUB 5811!111: IF G = THEN G = 0: GOTO 41111111111 
GDSUB 5998ul: PRINT TAB I 9>; "--- SORT RECORD IS> ---": GOSUB 590111 
GOSLIB 5700: IF G = 1 THEN G = 0: GOTO 41000 
IF Z - Y < 1 THEN E$ ="YOU MUST PROVIDE A RANGE > 1 TO SORT.": GOSUB 

59800: GOTO 41000 
GOSUB 5998111: PRINT "SORT ON FIELD NAMED?": PRINT 

LC = 10: GOSUB 50010 
GOSLIB 791!!111: IF G = 1 THEN G = 111: GOTO 82111111 
GO SUB 59981ZJ: PR I NT "SORT I NG RECORD NUMBERS "; Y; " THROUGH "; Z; 

Y = Y - l:Z = Z - 1:F = 1: IF B > 0 THEN FOR I = 0 TO B - 1:F F + 
Al I>: NEXT I 
J z - y + 1 
J INT IJ I 2> 
K Z - J 
D 0 

FOR I = Y TO I< 
L = I + J 

IF Al40 + Bl 1 THEN 8500 
IF MID$ IB$1I>,F,AIB>> < MID$ IB$1Ll,F,AIB>> THEN 8550 
GOTO 851111 
IF VAL I MID$ IB$II>,F,A<B>>> < VAL I MID$ IB$1L>,F,A<B>>> THEN 

8550 
T$ = 8$( I> 
8$ <I> B$ IL> 
B$1L> T$ 
D = 1 

NEXT 
IF D > 0 THEN 8440 
IF J > 1 THEN 8420 
GOTO 411111110 
GOSUB 5811111: IF G = 1 THEN G = 111 : GOTO 41111111111 
GOSLIB 5998111: PRINT TABI 9>;"--- TALLY RECORDIS> ---": GOSUB 5 900 
GOSUB 571!!11: IF G = 1 THEN G = 0: GOTO 411!!1!10 
GOSUB 5998111: PRINT "TALLY ON FIELD NAMED?": PRINT 

LC = 10: GOSUB 51!!1110 
GOSUB 7900: IF G = 1 THEN G 0: GOTO 9200 
IF Al411 + B) < > 1 THEN E$ "FIELD SPECIFIED IS NOT NUMERIC.": GOSUB 

5981.<!IZI: GOTO 41121111121 
9300 D = 0:F = 1: IF B > 0 THEN FOR I= 0 TO B - l:F = F + A<I>: NEXT 
9310 FOR I = Y - 1 TO Z - 1 
9320 D = D + VAL < MID$ IB$1I>,F,AIB>>> 
933111 NEXT I 
94J!IJ!l GOSIJB 5998111: PRINT "TALLY FOR FIELD NAMED ";A$ <Bl 
941 0 PRINT "IN RECORDIS) ";Y;" THROUGH ";Z;" IS:": GOSUB 59990 
94211 PR I NT D 
943111 GOEilJB 59990: PRINT "PRESS ANY KEY TO CONTINUE •••• " 
94411! GET l~$: GOTO 41100111 
111111111)0 GOSUB 5998111 



46 DATA BASE MANAGEMENT FOR THE APPLE 

1filf111Y.1 PRINT "DD YOU WISH TD ERASE THIS FILE (Y/Nl?": PRINT 
HJl!J20 LC = 1: GDSUB 511101111 
11111113111 IF W$ < > "Y" THEN 41!111J1!11il 
1fill!l4111 CLEAR : GOSUB 5998111: PRINT "FILE HAS BEEN ERASED •••• ": I 

599711J: GOTO 4f!Jl1111Jl1J 
11111111111 GDSUB 5998111: DNERR GOTO 3111911@ 
1 Hl10 PRINT CHR$ ( 13) + CHR$ <4> + "CATALOG" 

1 liJ01iJ: GDSUB 

111112111 GDSUB 599911J: PRINT "PRESS ANY KEY TD RETURN TD MENU •••• ": PRINT 
1103111 GET W$: POKE 216, 0: GOTO 41111111!1111 
1211lfill!I GDSUB 59981il: PRINT "RETURNING TD DISK EXECUTIVE DESTROYS": PRINT "A 

NY DATA CURRENTLY IN MEMORY.": GOSUB 59990: PRINT "IS THAT OK <YIN>?" 
: PRINT 

121111111 LC = 1: GDSUB 
120211J GOSUB 59980: 
2J!H!JQJQj IF AA$ = II D II 
2011110 GOSUB 59981i1: 

990 

511111110: IF W$ < > "Y" THEN 41i.Jl1J11l1i! 
END 
THEN 11il11111Jfi.J 
PRINT TAB( 6);"--- READ FILE FROM DISK ---": 

2111110 CLEAR : GDSUB 19111111: GDSUB 21i191i11il: DNERR GOTO 31i1900 
2021Zlli.J PRINT X$; "OPEN "; W$ 
2111210 PRINT X$; "READ ";W$ 
21113fi.J0 FDR I 0 TD 83: INPUT A (I>: NEXT I 
211J310 FOR I= 0 TO 39: INPUT A$<I>: NEXT I 
20320 
21!J4t!Jf!J 
2111410 

FOR I= 0 TD A<81>: INPUT B$<I>: NEXT I 
PRINT X$;"CLDSE ";W$ 

AA$ = "D": POKE 216,0: GOTO 40000 
2091110 PR I NT "SPECIFY FI LE NAME (MAX 3fiJ CHARACTERS> : ": PR I NT 
209 lfiJ LC = 30: GDSUB 5001111 
20920 X$ = CHR$ (13) + CHR$ <4>: RETURN 
311101110 GDSUB 4191i.J0: IF G = 1 THEN G = 0: GOTO 41ill1100 

GDSUB 580fiJ: IF G = 1 THEN G = 0: GOTO 4fiJ011J0 

GDSUB 59 

31111910 
30100 GDSUB 59980: PRINT TAB<?>;"--- SAVE FILE TO DISK---": GOSUB 5999 

0 
30110 GOSUB 211191110: DNERR GOTO 30911!0 
31112011J PRINT X$; "OPEN ";W$ 
311121111 PRINT X$; "DELETE ";W$ 
30220 PRINT X$;"DPEN ";W$ 
311123111 PRINT X$; "WRITE "; W$ 
311131110 FDR I = 0 TO 83: PRINT A (I>: NEXT I 
31213HJ FOR I = Iii TD 39: PRINT A$ (I>: NEXT I 
3111320 FDR I = 0 TO A (81 >: PRINT B$ (I>: NEXT 
31114111111 T$ = "CLOSE " + W$: PRINT X$; T$ 
3111410 POKE 216, 0: GOTO 41111111110 
31119111111 GOSUB 5998111: PRINT "I/O ERROR. RECOMMEND CHECKING DISK.": GOSUB 599 

90: PRINT "PRESS ANY KEY TD RETURN TD MENU •••• " 
31i191111 GET W$: POKE 216,liJ: GOTO 4121f11f!Jl11 
412111Jfi!0 GOSUB 59981!1: GDSUB 59'790: GDSUB 5999111 
411lfil1111 PRINT TAB< 1111); "1. USE APPLE DATA BASE" 
411111120 PRINT TAB< 10); "2. DEFINE RECORD FORMAT" 
41!l11130 PRINT TAB< lfiJ); "3. READ FILE FROM DISK" 
40040 PRINT TAB ( 10); "4. WRITE FILE TD DISK" 
4111f115fiJ PRINT TAB< 11!1); "5. READ DISKETTE CATALOG" 
40060 PRINT TAB ( 10>; "6. EX IT TD DISK EXECUTIVE" 
4111fi181il PRINT : PRINT 
4111f1191il PRINT TAB ( 10); "9. ERASE FILE FROM MEMORY" 
4111500 VTAB (23>: GET !$:I ASC (I$) - 48: IF I < 0 DR I > 9 THEN 411151!10 
40510 ON I + 1 GOTO 40500, 410011.J, 111100, 21!111100, 31!101!10, 1101!10, 12000, 4051!11!1, 4050111, 

1011100 
41fiJ01iJ GOSUB 41 91111!1: IF G = 1 THEN G = 0: GOTO 4(~1!11110 
4111110 GDSUB 5998fiJ: GDSUB 59991!1: GOSUB 59990 
411112111 PRINT TAB< 13>;"1. APPEND RECDRD<S>" 
4Hl30 PRINT TAB ( 13>; "2. INSERT RECORD (S)" 
41fil4111 PRINT TAB< 13); "3. CHANGE RECDRD(S)" 
4Hl50 PRINT TAB( 13); "4. DELETE RECDRD<S>" 
4111160 PRINT TAB ( 13>; "5. LIST RECORD <S>" 
41fiJ70 PRINT TAB< 13); "6. FIND RECDRD<S>" 
41108111 PRINT TAB< 13); "7. SORT RECDRD<S>" 
4HJ90 PRINT TAB ( 13>; "8. TALLY RECORD <S>" 
4111110 PRINT TAB ( 13); "9. ** NEXT MENU **" 
41500 VTAB (23): GET I$:I ~ ASC (I$) - 48: IF I< 0 DR I > 9 THEN 41500 



OPERATING THE DATA BASE PROGRAM 47 

4151QI ON I + 1 GOTO 415(!10, 2QIC!l0, 30(!1111, 4Ql(!IJ!I, 5QIJ!ll!I, 611100, 7 C!ll11f!I, 8000, 901!10, 40000 
41900 IF AA$ < > "D" THEN GOSUB 59980: PRINT "NO FILE IN MEMORY •••• ":1'"' 

500: GOSUB 59970:G = 1 
41910 RETURN 
5f!H!Jf!H!• LC = 4f!J 
51!1V.l if~ W$ = 
50020 GET I$: IF ASC !I$1 < > 8 THEN 5~1160 
512l031!I IF LEN CW$) > 1 THEN W$ LEFT$ (W$, LEN (W$1 - 11: PRINT 1$;: CALL 

- 868: GOTO 50020 
5C!li2141!1 IF LEN !W$1 1 THEN W$ "": PRINT 1$;: CALL - 868 

GOTO 501Zl2V.l 5f!ll?J50 
5f!lf!l610 
5121Ql70 
5f!lf!l810 

IF ASC <!$1 44 THEN GOSUB 595111111: GOSUB 5981110: GOTO 511111120 
IF ASC CI$) < > 13 THEN 50100 
IF LEN CW$1 > 0 THEN RETURN 

50090 GOSUB 59520: GOSUB 59800: GOTO 50020 
51211111111 IF LEN CW$) > = LC THEN GOSUB 59510: GOSUB 598100: GOTO 50(!120 
5 01 10 W$ = W$ +IS: PRINT I$;: GOTO 50020 
510~11 LC = 40:LD = 0 
5 Hl li21 W = QI 
51020 GOSUB 50010 
51030 IF LEFT$ !W$,11 CHRS (01 THEN 51060 
51040 IF <LEFT$ <W$,1) ="."OR LEFT$ !W$,ll •"-")AND (LEN CW$) > 1) 

THEN 5111170 
51050 IF LEFTS !W$,11 > 
51060 GOSUB 59530: GOSUB 
51070 LI= LEN CW$1:W 

5112160 

"I" AND LEFT$ CW$, 1> < ":" THEN 51070 
598Ql(!l: GOSUB 5985111 : GOTO 51010 
VAL <W$1:W$ = STR$ <W>: IF LI< > LEN CW$> THEN 

511118111 IF LD = 0 THEN RETURN 
51090 IF CW - INT <Wll < > 0 THEN GOSUB 59540: GOSUB 59800: GOSUB 5985 

0: GOTO 5HlHI 
5110111 LD 0: RETURN 
595111111 E$ "SORRY, COMMAS NOT PERMITTED' ": RETURN 
59510 E$ "MAX FIELD LENGTH HAS BEEN REACHED! " : RETURN 
5S'52121 ES "PLEASE! YOU MUST INPUT SOMETHING!": RETURN 
5953Ql ES "IMVALID NUMERICAL FORM. RE-ENTER DATA.": RETURN 
5954111 E$ "AN INTEGER VALUE IS REQUESTED, PLEASE. ": RETURN 
59551ZI 
5956!!1 
59sm1a 
5981111 

E$ "PLEASE RESPOND IN THE FORMAT REQUESTED.": RETURN 
E$ "NUMBER OUTSIDE VALID RANGE. RE-ENTER.": RETURN 
CH PEEf< (361:CV PEEi< (371: VTAB (221: HTAB (11 

GIJSUB 5995!!1 
5 9820 PRINT ES; 
59830 I = 5~21: GOSUB 59970 
5984111 POf<E 36, 121: CALL - 868: VTAB CCV + 1 I: HTAB <CH + 1 I: RETURN 
5985111 HTAB Cl~: CALL - 868: RETURN 
5995111 CALL - 198: FOR I = 1 TO 3121: I = I: NEXT I: CALL - 198: RETURN 
59970 FOR I I TO 0 STEP - l:I =I: NEXT I: RETURN 
5998111 HOME 
5999111 PRINT PRINT : PRINT : RETURN 



DATA BASE MANAGEMENT FOR THE APPLE 

DATA BASE 
APPLICATIONS 

In this section, I will present and discuss in detail a number of practical 
applications of the data base management program provided in this 
book. Methods of capitalizing on its strengths and minimizing the effects 
of its weaknesses will be pointed out. (And, later in the book, those that 
really want to delve into the art and science of programming, will be 
provided with tips on building in capabilities to suit their own special 
requirements!) 

MAILING LISTS 

The Classic Application 

Perhaps the most common use for a data base management program is to 
maintain and utilize a mailing list. Virtually everyone who has the savvy 
to utilize a personal computer has more than enough personal contacts to 
justify using a computer to help keep track of friends, acquaintances, and 
associates. It can be a lot more effective, in many instances, than keeping 
an address book. (Except, of course, for your very best friends. The 
whereabouts of those people should always be kept in your head and 
heart. Nothing that sacred should be trusted to any computer!) 

Defining the Record Format 

Any use of a computer requires tradeoffs. A tradeoff one faces when 
defining the fields to be used in an application, such as a mailing list, 
revolves around how much room to assign to each field. Remember, you 
must tell the program the maximum number of characters that will be 
allowed in each field. 

Now making this decision can be a little difficult in an application 
such as this because you might not know what names you are likely to 

48 



DATA BASE APPLICATIONS .49 

encounter in the future! So, how on earth can you assign a maximum 
length to the field that will hold the names of persons on your mailing 
list? Alas, readers, here is a typical practical case where nothing beats 
experience (or some hard scientific evidence). 

If you have been "managing" the list of names that will go in your 
data base for some time, chances are good you are familiar with some of 
the longer names in your list. (They often stick out like sore thumbs.) If 
so, count the number of characters in the longest names, including 
spaces, initials, and surnames, if applicable. You might also want to 
decide whether you will include titles or their abbreviations (such as Jr.) 
in the "Name" field. To be on the safe side for possible future additions to 
your list, you might want to add a few extra character positions to your 
final tally.Now take the highest number of characters you come up with 
and make that your field length assignment. 

But wait, what is the tradeoff in this situation? Well, the longer you 
permit each field to be, the longer each record will be. As the lengths of 
records become longer, the number of records that can be stored in a file 
becomes less. That is the tradeoff. Suppose your computer has 18,000 
bytes of memory left after the data base program has been loaded. If you 
define a name field to be 30 characters in length, when it could do the job 
with just 20, you are going to waste a lot of memory. For instance, a 
record length of 100 characters would mean you could store 180 records 
in a file of 18,000 bytes. If each record in that file only contained 90 
characters, then up to 200 records could be stored in the file. 

So, in many cases, it pays to closely evaluate such points as whether 
it might be worthwhile to, say, shorten surnames to initials and 
abbreviate all titles, thus enabling this maximum field length to be 
reduced. 

Having said all that, I am going to tell you that, in my own personal 
experience having scanned upward of half a million names in the past 10 
years, I have seldom found it necessary to allocate more than 20 
characters to a "Name" field. My uses for mailing lists have usually been 
commercial. In such applications, it is generally acceptable to use 
initials for all but the last name and abbreviate titles such as Junior and 
Senior. Thus, the "Name" field in this illustration is set at 20 characters. 

You have the same kind of decision to make for the lengths of all the 
fields in a record. For illustrative purposes, the "Address" field in this 
example will be set at 30 characters. This generally provides plenty of 
room for a street address, including an apartment number, provided 
judicious use of abbreviations is made for such details as the road, street, 
avenue, circle, plaza, or whatever. But I can also tell you from experience 
that if you want to print addresses on labels that are only 2% inches wide, 
then you had better limit the number of characters (at 10 to the inch on 
standard printers) in the "Address" field to a maximum of 27! 

The point has been made: select a field length that will provide 
room for your typical entries, while judiciously limiting the size to avoid 



50 DATA BASE MANAGEMENT FOR THE APPLE 

wasting memory space! In this practical illustration, the length for the 
"City" field has been set at 12 characters. The "State" field has been 
limited to two characters (using standard post office abbreviations). And 
the "Zip Code" field has been set at five positions, forgetting for the 
moment the urgings of the USPS for conversion to the "ZIP+ 4" format. 

A Zip Code Is Not a Number 

At least not when using this data base management program. You 
should consider it as an alphanumeric field for the following reason: 
Fields that are declared to be of the "numeric" type can only contain 
"significant" digits. Thus, a valid zip code, such as ~3456, could only be 
entered into a numeric field as 3456. The post office would frown upon 
(indeed, outright reject) any letter that entered its mechanized system 
with only four digits in the zip code. For it has been decreed that all zip 
codes shall contain five digits (or five plus four!). Verily, I say unto you, 
tell the data base management program that the zip code field is 
alphanumeric. 

I have defined a field for telephone numbers. It too is declared to be 
an alphanumeric field so that I can use characters such as parentheses. 
Standard telephone numbers in the United States can generally be 
stored within 14 character positions in the form: (123) 456-789~. 

Also, for this application I have created two other "additional 
information" fields. One is labeled "Category" and the other "Code" for 
the sake of discussion. 

I have arbitrarily, for illustrative purposes, created six different 
categories into which I will group people in this mailing list. They are: 
customer, finance, legal, personal, prospect, and supplier. 

Under the "Code" field I will have "subcategories" that are 
different for each "category" along the following lines: Under "customer" 
I have the "codes" GENL (general), MTNC (maintenance), and SPCL 
(special). Under "finance" I have ACNT (accountant) and GOVT 
(government). Under "legal" I have TAX (obviously for assistance from 
qualified experts), GEN (for general counsel), CIVL (for civil matters), 
and BUS (for attorneys specializing in business contracts). Finally, 
under "prospect" are INIT (for initiate contact), FLUP (for follow-up), 
and GETM (for time to close the sale). 

Thus, as I enter each personal contact into the file, I will use the 
"Category" and "Code" fields to categorize and code (within that category) 
each addressee. 

I have limited the "Category" field to a maximum of eight characters 
and the "Code" field to a maximum of four positions. Through the 
judicious use of abbreviations in the "Code" field, I can create many 
subgroups without using much storage space. 

There are eight defined fields in this example application. If you 
add up all the characters assigned to each field, you have the record 



DATA BASE APPLICATIONS 51 

length. It is 95 characters in this example. If your computer has 18,000 
bytes of memory left when the data base program is installed, then you 
would be able to store up to 190 records in a single file using this record 
format. (If you have a 48K Apple II with Applesoft in ROM, you will 
likely have a lot more than 18,000 bytes of memory available for a data 
file. On the other hand, if you are running Applesoft in RAM, you may 
have less than 18,000 bytes available for a file.) 

You would enter all the record-formatting directives just described 
by selecting Primary Menu option number 2 (DEFINE RECORD 
FORMAT), then responding to the prompts provided by the program. 
These prompts would be for the name, maximum length, and type­
(A)lphanumeric or (N)umeric-for each field. Here is a summary of the 
field definitions just described: 

FORMAT BY FIELD •, NAME, SIZE, 
1: NAME 
2: STREET 
3: CITY 
4: STATE 
5: ZIP CODE 
6: TELEPHONE 
7: CATEGORY 
8: CODE 

APPEND Your Data 

TYPE: 
2121 A 
3121 A 
12 A 

2 A 
5 A 

14 A 
8 A 
4A 

After you have defined the fields and returned to the Primary Menu, you 
select option number 1: USE APPLE DATA BASE to move to the 
Operations Menu. Once there, you can start building up a file using the 
APPEND option. 

The field format presented here is strictly for illustrative purposes. 
You, quite likely, would modify it to suit your own needs. However, for 
illustrative purposes, I am going to hypothesize that a number of 
records, including the four shown here, have been keyed into the current 
memory-resident file: 

( 1 ) 
JOHN DOE 
123 PLEASANT STREET 
ANYTOWN 
NJ 
07777 
(201) 999-1234 
PROSPECT 
INIT 

( 2 ) 
BILL SMITH 
5 STAR AVENUE 
BRIGHTON 
CA 
90186 



52 

(213> 555-1234 
PROSPECT 
6ETM 

( 3 > 
WAYNE SWEETOOTH 
10518 WAFFLE BLVD. 
SYRUPVILLE 
NY 
10101 
(212) 666-1234 
CUSTOMER 
SPCL 

( 4 > 
ALICE PAXTON 
101 ROUTE 5 - APT. 3B 
PETERSON 
NH 
03030 
(612J3) 111-1234 
LEGAL 
TAX 

Doing a Mailing 

DATA BASE MANAGEMENT FOR THE APPLE 

Now suppose you had 150 records such as those in your file. You decide 
that you would like to have a neatly organized "master" list to use as your 
quick-reference "address book." 

Fine, the first operation you might perform could be to perform a 
sort on the Zip Code field. After selecting choice 7: SORT RECORD(S) 
from the Operations Menu, you would respond appropriately to the 
program prompts so as to have the entire file sorted. You would specify 
that the sort be performed on the field named Zip Code. 

At the completion of the sort, you could have the newly organized 
list outputted to your system's printer using the LIST option. By 
specifying that the record numbers be displayed, you would end up with 
a "master" list that would be useful when updating the file. This is 
because it would show the "reference" position of each record within the 
sorted file. This list would be arranged in zip code order. Thus, 
knowledge of a person's zip code would quickly allow you to locate the 
other specifics pertaining to that individual, such as address, phone 
number, category, and so forth. 

Suppose, next, that you wanted to mail a circular to all of the 
"prospects" on your list. One way to approach the task would be to select 
the FIND option. You could specify that the entire file be searched, 
examining the "Category" field for occurrences of the word "prospect." 

Furthermore, you could set up the output so that ready-to-mail 
labels were produced on a printer! How? By simply directing that field 
numbers 6, 7, and 8 be suppressed! That would mean that only fields 1 
through 5 (Name, Address, City, State, and Zip Code) would be printed. 
Just what you want on a mailing label. 



DATA BASE APPLICATIONS 53 

Per haps, after you have sent out your circulars or flyers, you decide 
thatit would be a good idea to pay a visit tosomeofyourprospects. Which 
ones? Why, those residing in your own and adjoining states. You could 
get organized for this tour by sorting your list according to the contents 
of the "State" field. Once this had been done, you could obtain subgroups 
within states by sorting on the contents of the "Category" field.You could 
follow this up by organizing the "prospect" subgroup according to the 
contents of the "Code" field. This would group your prospects into those 
that had never been visited (INIT), those that needed follow-up (FLUP), 
and those that were ready to be asked to sign on the dotted line (GETM). 

Now you could efficiently plan your trip to cover local states, 
visiting only the subgroup of potential clients that needed your 
immediate personal attention. 

Of course, if you didn't want to actually visit prospects, you might 
think it beneficial to conduct a telephone sales campaign. OK, just press 
a few more keys on your computer. Tell the data base program that you 
want to FIND all "prospects" in the "Category" field. Set up the output 
(by suppressing field numbers 2, 3, 4, 5, and 7) so that you obtain a list 
that only shows the contact's name, telephone number, and code. In a few 
minutes you have precisely the list you need for the job! 

The FIND option just described would give you the list you wanted. 
It should be pointed out, however, that if you already had the file ordered 
by sorting it on the "Category" field, you could obtain the list of prospects 
faster using an alternate method. You could direct it to list just the 
records that contain the entry "prospects" in the "Category" field. The 
actual range of record numbers to be listed could be obtained from your 
previously sorted "master" list. 

Update Your File as Necessary 

Naturally, once you have established your initial file, you will store it for 
safekeeping on a diskette. Anytime you need to use it again, you just 
access the same diskette using option 3 of the Primary Menu. Once the 
file is back in memory, you can use the APPEND, INSERT, DELETE, 
or CHANGE options provided by the Operations Menu to update your 
information. 

You will likely find the CHANGE operation particularly useful in 
maintaining a mailing list. Remember, you use it to change the contents 
of individual fields within records. So, when a person moves to a new 
address, you can just alter the "Street," "City," "State," and "Zip Code" 
fields while leaving all the other fields intact. Or, if a prospect is 
upgraded to a customer, then you just make the appropriate alteration to 
the "Category" field. 

Remember, too, if you have your file ordered, say, by zip code, you 
can often keep it in order using the INSERT operation. If a new entry 
needs to be added, you can just refer to your master list to find the proper 



54 DATA BASE MANAGEMENT FOR THE APPLE 

point in the file at which to make the insertion. Since sorting a lengthy 
file can take some time, this technique is often wise if you just want to 
make a few additions without disturbing the ordering of the records 
already present. 

Experiment, But Remember 
the Limits 

Of course, the record format illustrated here is merely to give you a 
starting point. You have the freedom to create whatever fields you 
desire. Perhaps you want to provide extra fields in each record for 
adding notes and miscellaneous remarks over time. Fine. You can define 
up to 4~ fields for a single record. Remember, however, that no field can 
be longer than 4~ characters. And, that all of the fields together may not 
exceed 236 characters. Stay within those limits and "the program is your 
oyster." 

INDEXES 

If you have ever had to prepare an index for a book or manual, you know 
what a chore it can be. The classic manual method is to start the project 
with a large stack of three-by-five-inch file cards. Then you go through 
the text to be indexed and extract the key words. Perhaps, as you work, 
you will try to keep the cards in alphabetical order. Or perhaps you will 
wait until you have a huge stack of cards, then spend several hours 
putting it in order. The next step is to type all the information on your 
cards into a neatly arranged index. 

If you have never had to create an index for a publication, consider 
yourself fortunate. You can easily spend the better part of a day or two 
just trying to prepare an index for a book. Few people find this kind of 
tedious task enjoyable. 

But a data base management program such as this can really cut an 
indexing job down to size. This application of the program is so simple, 
yet saves so much work, that you might very well consider it miraculous. 

All It Takes Is Two Fields 

Sure, the typical indexing chore only requires constructing records that 
have two fields. One for holding words. The other for storing their 
corresponding page location(s). 

In the example illustrated here, I named the field that holds the 
words as the Word field, limited it to a maximum of 15 characters and 
specified that it be alphanumeric in type. The associated field for storing 
the page number where the word appeared was named the Page field. I 
limited it to four digit positions. I designated it as numeric in type. I did 



DATA BASE APPLICATIONS 55 

this because I knew it would be useful, in certain instances, to arrange 
repeated instances of the same word according to page number. 

Once the indexing file has been formatted, it is a simple matter to go 
through the text and input the relevant data into the computer. Each 
time a word is spotted that needs to be included in the index, it is entered 
in the Word field. The page number on which it occurs is then entered in 
the Page field. If the same word occurs in different contexts, fine! Enter 
it again. 

Here is what the raw data from a typical indexing project might 
look like when initially listed by the data base management program: 

FORMAT BY FIELD #, NAME, SIZE, TYPE: 

1: WORD 15 A 
2: PAGE 4 N 

EXPENDITURES 
128 

EXPENDITURES 
355 

EXPENDITURES 
412 

CORPORATIONS 
11 

CORPORATIONS 
225 

BIOLOGICAL 
45 

MOTOR VEHICLES 
172 

RAILROADS 
419 

RAILROADS 
150 

TELEPHONES 
212 

TOYS 
145 

WATER 
17 

WATER 
331 

HOUSIN6 
50 

EDUCATION 
287 



56 DATA BASE MANAGEMENT FOR THE APPLE 

Note that no attempt was made to alphabetize words as they were 
found when reading the text. Words of importance were simply inputted 
as found.Note, too, that in this example the text was perused at random. 
(This was done in order to illustrate a capability of the program. 
Typically, you would probably construct an index by reading through a 
text in a linear fashion. However, as far as the data base management 
program is concerned, it doesn't make any difference how you go about 
acquiring the raw data that you plan to use in the index.) 

The Computer Does the Hard Work 

Sure it does; that is what you have it for, right? Once the raw data for the 
index has been inputted, all you need do is tell the program to sort on the 
Word field. Here is how the example index would appear following a sort 
of the entire file on that field: 

FORMAT BY FIELD #, NAME, SIZE, TYPE: 

1: WORD 
2: PAGE 

( 1 > 
BIOLOGICAL 
45 

( 2 > 
CORPORATIONS 
11 

( 3 ) 
CORPORATIONS 
225 

( 4 ) 
EDUCATION 
287 

( 5 ) 
EXPENDITURES 
355 

( 6 ) 
EXPENDITURES 
412 

( 7 ) 
EXPENDITURES 
128 

( 8 ) 
HOUSINS 
50 

( 9 ) 
MOTOR VEHICLES 
172 

15 A 
4 N 



DATA BASE APPLICATIONS 

( 10 ) 
RAILROADS 
150 

( 11 ) 
RAILROADS 
419 

( 12 ) 
TELEPHONES 
212 

( 13 > 
TOYS 
145 

( 14 ) 
WATER 
331 

( 15 ) 
WATER 
17 

57 

Now you have the list alphabetized. If the index was large and you 
had numerous entries under the same word, you might want to have the 
computer go one step further. 

Note, for instance, that the word "expenditures" has three entries in 
the sample listing. However, because of the manner in which the entries 
occurred and the way the sort on the Word field was performed, the page 
sequence is not in ascending order.You could now perform a sort on the 
Page field, over just those records (numbers 5 through 7 in the example) 
that contained the word "expenditures." In just a few moments those 
records would be rearranged as: 

FORMAT BY FIELD •, NAME, SIZE, TYPE: 

1: WORD 
2: PASE 

( 5 ) 
EXPENDITURES 
128 

( 6 ) 
EXPEND !TURES 
355 

( 7 ) 
EXPENDITURES 
412 

15 A 
4 N 

Now those words are also ordered sequentially by numerical (page) 
order of appearance! 



58 DATA BASE MANAGEMENT FOR THE APPLE 

Naturally, if you had a number of repeated occurrences, you would 
perform a sort on each subgroup as necessary. 

Once this had been accomplished, you would be able to re-list the 
entire finished index, arranged both alphabetically and by order of page 
appearance. 

Sure beats the old file card method. In my experience, it wins by a 
factor of three or four in terms of ease and speed. Personally, I like that! 

HOUSEHOLD INVENTORIES 

Have you any idea of what all of your household possessions are worth? 
Could you, following a disaster such as a fire, make an accurate list of 
what was in your home? 

If you are paying for insurance, and you do not have such a list, then 
you are literally likely to be throwing your money away. Because, when it 
comes time to collect, you are going to have to demonstrate, in a 
reasonable manner, that you knew just exactly what your losses were. 

One way to solve the potential problem is to stash all your receipts 
for major household purchases in a safe deposit box at a bank. 

Another way is to use your computer to maintain an up-to-date list 
of all important valuables. Then keep a copy of that list (perhaps even a 
backup diskette!) in a safe deposit box. There are other advantages to 
following this method, as will be pointed out. 

You Need Not Be Elaborate 

Using a data base management program, it doesn't take much work to 
come up with a neat and efficient system for maintaining an inventory of 
household belongings. I use a record format having only six fields. 
Perhaps you would like to duplicate the format I have found sufficient. 
But, you can add or delete fields to suit yourself. Here is the record 
structure I use: 

FORMAT BY FIELD *• NAME, SIZE, TYPE: 

1: ITEM 
2: LOCATION 
3: COST ($) 
4: DATE ACQD 
5: NOTE 1 
6: NOTE 2 

40 A 
10 A 

6 N 
SN 

40 A 
40 A 

I like to leave plenty of room in the first (Item) field to adequately 
describe things. Although it is seldom necessary to use it all, it is nice to 
have it available for those special cases. 

The "Location" field is only assigned 1~ character positions. It is a 
good idea to develop your own set of abbreviations to use in this field. For 



DATA BASE APPLICATIONS 59 

instance, LR for living room, MBR for master bedroom, etc. But 1~ 
characters gives you the space to spell out kitchen, bedroom, garage, 
attic, and so on, if that suits you better. Be consistent in your assignments 
or abbreviations. Doing so will enable you to perform meaningful sorts 
on the "Location" field so that you can group the contents of each room. 

The "Cost" field is shown with a dollar sign in parentheses as a 
reminder that amounts are entered to the nearest whole dollar. This field 
is declared to be strictly numeric so that the program's TALLY 
operation can be used. This can be beneficial as will be shown later. I 
limit the length of this field to just six digits because I don't have any 
individual items worth more than $999,000. Of course, if you belong to 
the multimillionaire set, then you can always set this field larger. (But 
remember the Apple II can only use nine significant digits. Don't waste 
space by allocating too many characters to this field.) 

Now the "Date Acquired" field (abbreviated DATE ACQD to fit 
within the 10 characters allowed for a field name) needs special mention. 
I have made it numeric in type and set it to a length of eight characters. I 
have done this so that I can use a little scheme that permits data to be 
numerically arranged by date. The scheme is to encode all dates in the 
form "year-month-day." Thus, the date May 25, 1982, would be entered 
as: 19820525. Note that all four digits are used for the year. I do this 
because I am an optimist.You could reduce this field to just six digits and 
store the year as just two digits. Thus, the same date could be stored as 
820525. But, gee whiz, what happens when the year 2000 rolls around 
and you want to arrange your records in chronological order? (See what I 
mean about being an optimist? I am planning on my little old Apple 
lasting another 17 years!) 

Some of you may not want to bother with the last two fields. They 
are maximum length fields for keeping miscellaneous notes about the 
items recorded. I'll show you the kind of information you might keep 
track of in a couple of sample entries. Then you can decide for yourself 
whether you want to assign more or less fields and/or characters-per­
field for this purpose. 

Remember the old tradeoff. The more room each record takes, the 
less records you can have in a file. It turns out, on my system, that I can 
store 147 records in a file with the format shown. Now I don't have 
anywhere near 147 items worthy of recording in my household, so the 
record length is just fine for my purposes. But, your situation may be 
different. If you will need more records in a file, then shorten or 
eliminate fields 5 and 6. (Of course, you could create two or more files for 
holding all your household inventory records, if necessary.) 

Fill the File 
Once the file format has been established, you just start going around 
your house or apartment, eyeballing everything of value. If it's worth 
keeping track of (that means getting reimbursed if the place goes down 



60 DATA BASE MANAGEMENT FOR THE APPLE 

the tubes), then you make an entry in your data base. Here are some 
typical examples of entries you might make in such a file: 

ITEM: SOFA 
LOCATION: LR 
COST <$>: 84!!1 
DATE ACQD: 197811!214 
NOTE 1: LOFT'S FURNITURE STORE. 
NOTE 2: TREAT FABRIC EVERY 5 YEARS. 

ITEM: REFRIGERATOR CG.E.> 
LOCATION: KITCHEN 
COST ($): 917 
DATE ACQD: 1982!1!5!!!6 
NOTE 1: FRIENDLY APPLIANCES INC. 
NOTE 2: 4 YEAR WARRANTY ON MOTOR. 

ITEM: PEARL NECKLACE 
LOCATION: SAFE 
COST ($): 1211!!1! 
DATE ACQD: 198!1!1224 
NOTE 1: FINEST JEWELERS CO. 
NOTE 2: INSURED BY RIDER. RENEW ANNUALLY. 

OK, you get the idea. 

Evaluating Your Assets 

Once you have inputted all the data, you can begin to take a look at your 
situation. You may discover some surprises. 

For example, perhaps the first experiment to try is to simply 
perform the TALLY operation. Try it on the Cost($) field, over the entire 
file. Are you startled by the figure it comes up with? Do you feel you are 
adequately insured? 

There are all kinds of other ways to examine your situation in a 
realistic light. Have you ever wondered which room to start hauling stuff 
out of if someone told you that you had to evacuate your residence within 
two hours? Well, if you want to get an idea of the most valuable room in 
your domicile, do the following: 

First sort the data file on the contents of the Location field. This will 
group all of the articles in each room (provided you have been consistent 
with your room names and abbreviations). Then you can perform the 
TALLY operation over the range of records residing in each group. In a 
matter of minutes you can come up with the total value of your 
possessions in each room. Any surprises? 

Did you know that, if you should ever suffer a catastrophe, the 
insurance company is going to reimburse you for your losses on a 
depreciated schedule (unless you have "replacement value" coverage)? 
You can get a pretty good idea of how "aged" your overall household 
goods are by doing the following: Sort the file by the contents of the Date 



DATA BASE APPLICATIONS 61 

Acquired field. If you used the dating technique I suggested earlier, the 
records will then be arranged according to the date acquired. Your 
oldest items will head the list. 

With the file organized in this fashion, the TALLY option can be 
used to obtain sums (in the Cost ($) field) over the range of records 
spanning each calendar year. Then, if you are the financial-analyst type, 
you can quickly get an idea of your net worth by applying an appropriate 
depreciation formula to the sum obtained for each annual period. 

You might also be able to use the sum obtained for the current year 
to figure the applicable sales tax deductions that could be applied 
against your income taxes. Wouldn't that be pleasurable? 

Make a Few Copies for the 
Safe Deposit Box 

You bet.Use the LIST option to print a few copies of the file for storage in 
a safe location. You might even decide to keep a copy of the file on 
diskette in a special, safe place. Why be sorry? Make that computer 
provide you with some security! It owes it to you. After all, you keep it 
supplied with juice! 

TAX DEDUCTIONS 

One reason people dislike paying personal income taxes is because of all 
the work it takes to document deductions. There are two ways you can go. 
Take the "easy" way and settle for the "standard deduction" allowed by 
the government. Or take the "hard" way and prove that your deductions 
exceeded the "standard." 

Some people never bother to even examine the second alternative 
because they don't want to be bothered keeping the necessary documents 
and records, to say nothing of then doing the appropriate calculations. 

But, the use of your data base management program can make the 
task of tracking and calculating legitimate tax deductions a lot easier. 
Maybe easy enough for you to exercise your right to pay only your fair 
share of taxes. The proper fair share can only be made by accurately 
examining your options. Why cheat yourself? 

You Still Have to Keep Records 

No, the use of this program will not eliminate the need to keep receipts of 
all your tax-deductible expenses. But it can make it a lot easier to keep 
track of those expenses, and it can help you with the critical task of 
calculating whether your deductions exceed the "standard deduction." 

To do this, you will want to establish a data file with records having 
fields such as what follows on the top of the next page. 



62 DATA BASE MANAGEMENT FOR THE APPLE 

FORMAT BY FIELD *• NAME, SIZE, TYPE: 

1: DATE 
2: DEDUCTION 
3: AMOUNT 
4: CATEGORY 
5: PAID BY 
6: REFERENCE 

4 N 
30 A 

8 N 
10 A 
20 A 
20 A 

Note that the Date field is defined as numeric in type and has room 
for four digits. All dates in this example will be stored as month and 
day-of-month (i.e., April 1st would be recorded as 401; November 15th as 
1115, etc.). It is assumed that the contents of any particular file will be for 
a specific calendar year period. (If this is not the case in your application, 
review the preceding application for an example of another way to store 
dates.) 

The Deduction field is used to describe the nature of the deductible 
expense. Thirty characters should be sufficient for most users, but feel 
free to size it to your needs. 

The Amount field is numeric and allotted eight digit positions. 
Since, in this application, figures may be given in dollars and cents, one 
of those positions may be used for a decimal point. Allowing for the use of 
another position for a minus sign (in case you wanted to record negative 
values, which might be the case if you needed to adjust a category), then 
negative amounts of up to -9,999.99 could be stored. Since positive 
values do not use a sign position (because it is implied), positive values of 
up to 99,999.99 could be recorded. 

The fourth field, assigned a maximum of 10 characters, is used to 
permit placing expenses into various categories, such as medical, 
interest, casualty losses, and so forth. 

Two more fields, each having 20 characters, allow the recording of 
additional information. Such as to how the expense was paid and 
additional document-supporting information. 

Example Entries 

Perhaps the bestwaytogetan idea of the practical use of this application 
is to provide a few typical entries in a data file: 

DATE: 411!1 
DEDUCTION: DR. JIM DANDY 
AMOUNT: 4111 
CATEGORY: MEDICAL 
PAID BY: PERSONAL CHECK # 412 
REFERENCE: MARCH BILLING 

DATE: 421 
DEDUCTION: SALES SEMINAR 
AMOUNT: 195 
CATEGORY: EDUCATION 



DATA BASE APPLICATIONS 

PAID BY: MASTERCARD 
REFERENCE: CHARGE NR. 1414 

DATE: 430 
DEDUCTION: DONOVAN'S PHARMACY 
AMOUNT: 12.95 
CATEGORY: MEDICAL 
PAID BY: CASH 
REFERENCE: PRESCRIPTION # 7788 

Pretty straightforward, right? 

Organize and Deduct! 

63 

If you didn't already know it, you are probably rapidly learning that the 
hardest part about using a data base management program is entering 
the data! Once you have the data you want to keep track of entered, 
getting the computer to organize it and extract meaningful results is 
easy. 

For instance, perhaps one of the first directives you will give to a tax 
deductions data base is to sort the file according to the contents of the 
"Category" field. 

Then you will be in a position to effectively use the TALLY 
operation. You could, of course, do a summation on the "Amount" field 
for all of the records in your file. That cannot only satisfy your immediate 
curiosity, but it can indicate whether it is worth analyzing any further. 
After all, if the total possible itemized deductions does not exceed the 
"standard" that anybody can take, then you have all the information you 
need! If it does, and you plan on itemizing, then you will need to fill in the 
long tax forms according to categories. 

So, you direct the program to tally the various subgroups you have 
identified in the "Category" field. Remember, you just specify the range 
of record numbers over which the tally (on the "Amount" field) is to be 
done. Record each subtotal in the appropriate place on your tax form(s). 
You can't beat that for convenience, can you? 

You might also want to use your tax deductions data base to gather 
some other kinds of information on your spending. For instance, you 
could re-sort the file by the contents of the "Paid By" field. Now you 
would be able to analyze what percentage of your expenses you were 
paying by credit card, personal check, or other means. 

Or, perhaps you would like to view how expenses piled up over the 
year on a chronological basis. OK, just arrange things in that order by 
sorting on the "Date" field. Perhaps you will want to make a list on your 
printer of the file arranged in this order, for future reference. 

And, the next time that auditor calls you in for a friendly little chat, 
you will know that you have the kind of records that can eliminate a lot of 
arguments. 



I' . 

I. I 

I " 
II 

I 
I I 

II 

64 DATA BASE MANAGEMENT FOR THE APPLE 

SALES ANALYSES 

Many people who run a small business need to meticulously keep track of 
their inventory turnover. The rate of turnover and the margin between 
acquisition and the actual retail price at which goods are sold determine 
whether one makes any money. The rate of turnover is an especially 
significant factor that can often make the difference between success 
and failure. 

For instance, a product with a margin of a mere 1~% that turns over 
six times a year is a lot more profitable than one with a 4~% margin that 
takes a year to be sold. 

The fact of the matter is that many small businesspeople do not 
(cannot?) accurately track their actual turnover rate. The paperwork 
involved is generally just too time consuming. 

But that can be changed with the help of a data base management 
program. Here is how a data file might be formatted to help perform 
sales analysis for a small business, such as an antiques dealer. 

FORMAT BY FIELD •, NAME, SIZE, TYPE: 

t: ITEM 
2: CODE 
3: COST 
4: DATE ACQD 
5: SOLD FOR 
6: DATE SOLD 

36 A 
12 A 
SN 
SN 
SN 
SN 

The first field is used to store a physical description of the item 
being inventoried. Another field is assigned for a stock code or other 
identifying information. These first two fields are alphanumeric in type. 

The remaining four fields are designated as numeric in type. The 
third field is used to record the purchase or wholesale price of an object. 
The fourth field is used to record the purchase date. This is an important 
piece of information if one wants to be able to obtain turnover rates. The 
date is kept in the year-month-day format suggested in an earlier 
example application. (Thus, January 2, 1982, would be entered as 
1982~1~2.) The fifth field holds the price at which an item was actually 
sold. The last field in a record is for the selling date. This information is 
needed to keep track of how long an item was stocked before it sold. 

Only 8~ characters are used in a record, so most Apple systems 
could store several hundred items in one file. Of course, you can modify 
the format and field-length assignments as you deem appropriate for 
your specific case. 

Typical Data 

Here are how a few records might look for a businessperson dealing in 
antiques (see top of next page): 



DATA BASE APPLICATIONS 

ITEM: BRASS BED 
CODE: FURN-11@1-11105 
COST: 225 
DATE ACQD: 198111!11515 
SOLD FOR: :38111 
DATE SOLD: 1982111312 

ITEM: FIREPLACE SET 
CODE: UTIL-004-012 
COST: 42 
DATE ACQD: 1981111116 
SOLD FOR: 85 
DATE SOLD: 198211121113 

ITEM: DOLL HOUSE 
CODE: TOYS-1111113-011!2 
COST: 125 
DATE ACQD: 1982111614 
SOLD FOR: 
DATE SOLD: 

65 

Note that, in the third record, there isn't any entry for the last two 
fields. This is how the record would look when an item had not yet been 
sold. 

Sales Analysis 

Of course, you build up your initial data file by entering information in 
the first four fields of a record as items are acquired. Later, when an item 
is sold, you can locate its record number using the FIND option.You can 
search on either the "Item" or "Code" field. Once it has been located, you 
can use the CHANGE option to update the last two fields (actual selling 
price and the date of the sale). 

If you want to know whether you are spending more than you are 
taking in (whether inventory is increasing), you can perform the TALLY 
operation on the "Cost" field and then on the "Sold For" field. 

A chronological ordering of the file can be obtained by sorting on 
the "Date Acquired" field. You can then compare the acquisition and 
selling dates on an item-by-item basis to get an idea of what types of items 
are selling fastest. 

You can review subtotals of various groups of items by first sorting 
on, for instance, the "Code" field. Then, taking a tally over the range of 
record numbers comprising each group of interest. 

One more little tip: If you want to keep your account current, it is 
easy to eliminate your old records, limiting your deletions to only those 
items that have been sold. First arrange the file in chronological order by 
sorting on the "Date Sold" field. Then list the file to ascertain the range of 
numbers of those records that are obsolete. Use the DELETE option to 
erase that group of records. Now you have more room to input current 
items. Doing this on a regular basis will keep your information file 
current and relevant. (Don't forget, if you want to keep a printed record 



66 DATA BASE MANAGEMENT FOR THE APPLE 

of those items that you delete from your file, then just LIST that portion 
of the file before you perform the DELETE operation!) 

Small businesspeople need all the help they can get. Could you 
envision a data base management program helping you when applied as 
outlined here? 

PARTS LISTS 

Engineers and product designers are often plagued with the responsi­
bility of maintaining accurate parts lists. That is, whenever they design 
a machine, they must methodically itemize each and every part used in 
the device. This mundane task, while vital, is often shunned by designers 
because it is not directly related to the creative "design" process. 

But, the use of a data base management program can make the 
upkeep of such a list somewhat less tedious. Here are some of the fields 
one might want to assign to records that will be used to maintain a 
product parts list: 

FORMAT BY FIELD #, NAME, SIZE, TYPE: 

1: PART 
2: QUANTITY 
3: STOCK # 
4: UNIT COST 
5: TOTAL COST 
6: VENDOR 
7: ADDRESS 
B: CITY 
9: STATE 

10: ZIP CODE 
11: CONTACT 
12: TELEPHONE 

40 A 
4 N 
BA 
6 N 
SN 

20 A 
30 A 
12 A 

2 A 
5 A 

20 A 
14 A 

There are fields for storing a description of each part, the quantity 
of that part used in the device, an in-house stock number, the single unit 
cost, and the total cost. The total cost would simply be the quantity of 
parts used times the single unit cost. 

The remaining fields are used for keeping information about the 
primary vendor from which the parts are obtained.Note that these fields 
are arranged similar to that shown for a mailing list application. Thus, 
virtually all of the capabilities described for that application are 
automatically a part of this application. Therefore, all of the possible 
benefits one might derive from being able to organize and manipulate 
the address-related fields will not be repeated here. 

Rather, I will discuss some of the operations one might wish to 
perform on the parts-related fields. 

You can, of course, arrange the parts list into alphabetical order by 
sorting on the "Part" field. This makes it easy to review what parts have 
been used in the machine under development. 



DATA BASE APPLICATIONS 67 

Using the TALLY operation on the "Quantity" field quickly yields 
how many items have been used in the device. And, the total parts cost 
can be obtained by tallying the "Total Cost" field. 

Does the unit use a number of different sized, but similar, parts? 
For instance, perhaps it has six different varieties of nuts and bolts. If 
these are entered in consistent fashion in the "Part" field, such as: 

BOLT - 1/4 INCH 
BOLT - 3/8 INCH 
BOLT - 1/2 INCH 
NUT - 1/4 INCH 
NUT - 3/8 INCH 
NUT - 112 INCH 

then the data base program can be used to group similar parts. Once 
grouped, tally operations over the appropriate records can be used to 
obtain the costs of individual types of parts. 

Or one can sort the file on the "Unit Cost" field to see which parts are 
contributing the most costs to the machine. Perhaps substitutions can be 
made to reduce manufacturing expenditures? 

Are you going to build some prototypes? A list arranged according 
to the stock numbers used in your plant can, possibly, speed up the 
parts-pulling procedure by stockroom personnel. 

What? The parts are not in stock and they must be ordered from the 
vendors? No problem, your purchasing agents will think you are the 
world's greatest designer if you do the following: 

Sort the data file according to vendor name. List the file while 
suppressing all the fields except the part description, quantity, vendor 
name, contact, and phone number. Give the list to purchasing. It will be 
ordered so that all the parts from each vendor are grouped together. 
(Warning, once you do this for a purchasing agent, be advised that they 
may become addicted to the service. Make sure your computer is 
reliable, for failing to deliver in this fashion in the future can bring loud 
complaints!) 

APPOINTMENT ORGANIZER 

Are you a doctor, dentist, attorney, or businessperson who maintains an 
appointment schedule? If so, you may want to use your data base 
management program to help keep track of all your meetings. Here is 
one way to go about it: 

Format a file so that records contain the fields illustrated here: 

FORMAT BY FIELD #, NAME, SIZE, TYPE: 

1: LAST NAME 
2: FIRST NAME 

14 A 
10 A 



68 

3 DATE 
4 TIME 
5 PURPOSE 

DATA BASE MANAGEMENT FOR THE APPLE 

8 N 
4 N 

40 A 

Note that in this application, two fields are assigned to an 
individual's name. This was done because it may be desirable to 
sometimes organize the file alphabetically by last name. (The field called 
"First Name" can also hold a middle initial and/or title, such as "Jr." or 
"III.") 

Note that the "Date" field is numeric in type. The convention 
mentioned in an earlier application, where dates are stored in the 
arrangement year-month-day, will be used. All four digits of the year are 
assumed to be used in the example. Thus, July 5, 1982, is entered as 
19820705. Some may want to shorten this field to six digits, using only 
the last two digits of the year. In many situations it is likely that the year 
could be eliminated altogether. Thus, only four spaces-for the month 
and day-would be required. 

The "Time" field is allotted four numeric digits. It is assumed that 
international "24 hour" time will be used in this example. This has 
advantages if you want to be able to chronologically order appointments 
occurring on the same date. 

If a user wanted to use 12 hour notation, this field might be 
formatted as alphanumeric in type and assigned a length of six 
characters. Then the time could be prefixed by the notation "AM" or 
"PM" as appropriate. If this were done, you would want to be sure to 
always use four digits for the time in order to allow proper alphanumeric 
sorting of the field. Thus, 1:30 in the afternoon would have to be inputted 
as: PM0130. 

The last field, labeled "Purpose," would be used for noting the 
intent of the meeting. 

You might want to provide room for one or two more fields in the 
records. These fields could be used for storing notes about what was 
actually accomplished at a meeting. 

Line'Em Up! 

Once you have the record format determined, you can start lining up all 
those appointments by entering the appropriate information. Here are 
what a few entries might look like in a typical application: 

LAST NAME: SMITH 
FIRST NAME: JOHN P. 
DATE: 19821!171!15 
TIME: 915 
PURPOSE: ADVERTISING CONTRACT 

LAST NAME: DOE 
FIRST NAME: JANE 



DATA BASE APPLICATIONS 

DATE: 1982111705 
TIME: 11ZlJ!lJZl 
PURPOSE: PRINTING SCHEDULE 

LAST NAME: JONES 
FIRST NAME: SAMUEL T. 
DATE: 1982!Zl71Zl5 
TIME: 1431Zl 
PURPOSE: DISCUSS NEW PRODUCTS 

69 

Since this type of application is likely to be an ongoing affair, you 
will want to save a copy or two of your current data file on a diskette. If 
your appointment schedule is vital to the conduct of your business or 
personal affairs, then it is a good idea to keep the file backed-up on several 
diskettes. One way to do this is to write the file to alternate diskettes on 
alternate days. That way, if you ever lose a diskette, you will only be out a 
day's worth of appointments. 

There are a variety of ways in which you can use the power of your 
data base management program to help you keep track of your 
appointments. 

For instance, once you have inputted your initial batch of future 
meetings, you might do the following: 

Sort the file according to the contents of the "Date" field. Then list 
the contents of the file so that you see the grouping of your appointments 
by date. Now further arrange the file chronologically by time of day.You 
could do this by sorting the groups of identically dated records according 
to the contents of their "Time" fields. To do this, you would specify the 
range of record numbers over which each sort operation (on identically 
dated records) was to be performed. 

The result would be a file arranged by date and time of 
appointment. A printout would provide you with a "master" list of future 
appointments. 

Alternately, each day you could use the FIND option to produce a 
list of appointments for that day (by searching for occurrences of the 
current date in the "Date" field). 

Perhaps you would rather have a list of meetings arranged 
according to the last names of the parties or by subject matter. No 
problem. Sort the file on the appropriate field and list it out! 

Practical Aspects 

Frankly, this type of application is best approached from the "batch 
mode" point of view. It is highly unlikely that you will want to keep your 
computer tied up all day serving as an appointment scheduler. You are 
better off keeping a printed copy of the file (or portion thereof, such as the 
current day's appointments) handy. You can then check appointments 
off as they occur or make a note directly on the list to insert future 



70 DATA BASE MANAGEMENT FOR THE APPLE 

appointments. Then, at the end of the day, you can call up your 
appointments data base from a diskette and update it. 

Trying to run this application in "real time" by constantly 
referring to the computer is seldom practical. While you might be 
tempted, for instance, to keep the appointment data base "on line," in 
most instances it simply won't save time. Unless the data base is 
relatively small (say, 3~ to 4~ entries or less), the time it takes to have the 
computer search for a particular entry can become impractical. After 
all, it is not likely that you would want to keep a potential customer on the 
phone more than 3~ or 4~ seconds while you tried to find a suitable time 
slot in which to schedule a meeting. You are better off having an up-to­
date physical listing that you can refer to immediately. Then revise 
that list on a regular basis as you add or modify appointments. 

SELF-TUTORING 

This is a simple, yet highly effective, application of the data base 
management program. Despite its simplicity and obviousness, many 
people are surprised to discover its use in the "educational" arena. 

The whole idea here is to set up a file so that the program will serve 
as a computerized memory-drill aid. All you have to do is format records 
to contain a single field. This field will serve two purposes; which one 
depends on whether the record number is odd or even. You might format 
the record and assign the field name as: 

FORMAT BY FIELD #, NAME, SIZE, TYPE: 

1: ? I ANSWER 40 A 

You then build up the data file by alternating questions and 
answers in the records comprising the file. That is, record number 1 
would contain a question. Record number 2, the answer to the question in 
record number 1. Record number 3 would contain another question, 
record number 4 the answer to that, and so forth. 

The questions can relate to virtually any subject matter. But, it is 
generally best to structure the information as one might do for a 
vocabulary drill. Here is how a few questions and answers might appear 
in a hypothetical file (with each record preceded by its record number to 
highlight the odd/even arrangement of questions/answers). 

( 1 ) 
? I ANSWER: CAPITAL OF CALIFORNIA? 

( 2 ) 
? I ANSWER: SACRAMENTO 



DATA BASE APPLICATIONS 71 

( 3 ) 
? I ANSWER: SQUARE ROOT OF 9? 

( 4 ) 
? I ANSWER: 3 

( s ) 
? I ANSWER: OPPOSITE OF OLD? 

( 6 ) 
? I ANSWER: NEW 

( 7 ) 
? I ANSWER: NUMBER OF CUPS IN A QUART? 

< B > 
? I ANSWER: 4 

Since there is only one field in a record, you can put quite a few 
records in a file. (Particularly if you reduce the field length down to, say, 
20 characters. If you have sufficient memory, it is possible to store up to 
499 question/answer pairs in a file!) Once you have created the "drill" 
file, you can immediately put the "self-tutor" to work. 

All you have to do is place the program in the LIST mode. Select the 
option that outputs to the video screen. Begin the drill with any odd­
numbered record. (You can elect to have record numbers printed if you 
want to keep track of where you are in the file. Or, if you find them 
distracting, select the option that suppresses the display of the record 
numbers.) 

When the odd-numbered record is displayed on the screen, it will 
present a question. Mentally answer the question. When you are ready to 
confirm your answer, press a key. Bingo! The next record that displays 
will give the answer to the previous question. Were you right or wrong? 
You have immediate feedback. Make a note of any questions you miss. 

To bring up the next question, press a key. You are on your way. 
Drill as fast and as long as you want. The session terminates when you 
have gone through the file. Or, you can end the session by striking the 
RETURN key. 

The system is neat and really works. Furthermore, if you have a 
large file covering a lot of facts, you can select the particular sections you 
want to cover at any session. Just tell the LIST option where you want to 
start within the file. (Keep a summary, of course, of the record numbers 
you use for questions/answers on a particular subject.) 

The method is particularly suitable for vocabulary drilling when 
learning a new language. And, it is adaptable to just about any subject 
matter that requires the memorization of facts and figures. 

Study hard and you too may grow up to be President. 



72 DATA BASE MANAGEMENT FOR THE APPLE 

CHECKING ACCOUNT 

Ever wish you had an easy way to reexamine all your checking 
transactions? Easier, that is, than simply scanning your scribbled-in 
checking account ledger or checking stubs. 

Well, now you do! You can use your data base program to 
reorganize your checking account activity. Why, it can even help you 
reconcile your monthly banking statements! 

Here is one way to approach the matter. (You know by now that the 
purpose of these application examples is just to shed some light on the 
subject. You add your own little touches to customize aspects to meet 
your own particular requirements.) 

FORMAT BY FIELD #, NAME, SIZE, TYPE: 

1: D/W 
2: AMOUNT 
3: DATE 
4: REF. NR. 
5: PAYEE 
6: PURPOSE 

1 A 
9 N 
B N 
4 N 

20 A 
20 A 

The first field will be used to indicate whether the rest of the entries 
in a record are for Deposits or Withdrawals. The use of this little, 
single-character field, makes it easy to sort the file into those two major 
groups. 

The second field will store the dollar amount of deposits and 
withdrawals. To make statement reconciliation easier (that means have 
the computer do it!), entries in this field may be positive (deposits) or 
negative (withdrawals, i.e., checks). 

The third field stores the date in the format: year-month-day. 
March 1, 1982, would thus be entered as: 1982~3~ 1. The use of this 
format in a numeric field facilitates arranging the file in chronological 
order using the SORT option, if desired. 

The next field will be used for recording the check numbers. It can 
also be used for numbering deposits. 

Finally, there are fields for recording the payee and reason for the 
payment. 

Check It Out 

Here are a few typical entries: 

D/W: D 
AMOUNT: 500 
DATE: 19821113 11!1 
REF. NR. : 111@ 1 
PAYEE: 
PURPOSE: 



DATA BASE APPLICATIONS 

D/W: W 
AMOUNT: -111!2. 12 
DATE: 198211!311!4 
REF. NR.: 111!1 
PAYEE: STATE NATIONAL BANK 
PURPOSE: CAR PAYMENT # 17 

D/W: W 
AMOUNT: -58.29 
DATE: 198211!3!1!7 
REF. NR.: 111!2 
PAYEE: N. E. UTILITIES 
PURPOSE: ELECTRIC SERVICE 

73 

The first entry illustrated is for a deposit to the checking account. 
Note that the "Amount" field contains a positive value. The "Reference 
Number" (REF. NR.) field contains 1~~1. The convention in this 
example being that deposits are numbered above 1~~~ to distinguish 
them from check numbers that will be less than that value. The last two 
fields are simply not used for deposit entries. 

The second and third records indicate withdrawals by check.Note, 
particularly, that the contents of the "Amount" fields are negative in 
value (preceded by a minus sign) to indicate withdrawals. 

Putting It to Work 

Want to know what your present account balance should be? Just do a 
TALLY operation over the entire file on the contents of the "Amount" 
field. A positive result means you are ahead of the game and have an 
available balance. A negative answer means you are overdrawn. Oh-oh. 

Having difficulty reconciling a statement from the bank? Try 
sorting the file on the first field. This will split it into two major sections: 
deposits and withdrawals. If you are assigning reference numbers to 
deposits, then you might want to order that section of the file according to 
those numbers. Just sort the appropriate range of record numbers by the 
contents of the fourth field (REF. NR.). If you are not using reference 
numbers for deposits, then perhaps a sort on the "Date" field (over just 
those record numbers representing deposits) will be helpful. 

Now finish organizing the withdrawals. Sort the appropriate range 
of records by the contents of the "Reference Number" field. Then use the 
LIST option to print out just the "Amount" and "Reference Number" 
(and possibly the "Date") fields for the entire file. Remember, you do this 
by suppressing all of the unwanted fields. In just a few moments you will 
have a neatly organized list of deposits and withdrawals. You can 
compare these against your bank statement and returned checks. You 
can also obtain separate tallies over just the deposit records and just the 
withdrawal records, to get subtotals for each category. With this kind of 
assistance, you should be able to find those mistakes made by that big old 
bank in no time at all. 



74 DATA BASE MANAGEMENT FOR THE APPLE 

You say it is the end of the year and you want to see how much you 
paid out to individual payees? Fine. First you sort by the contents of the 
"Payee" (or perhaps, "Purpose") field. Once the file is grouped according 
to payee, then you can do a tally over each subgroup. This will give you 
the amount paid to each payee over the entire time spanned by the file. 
(Watch out, this exercise can sometimes be shocking. It is no fun learning 
that you have been paying $45~ .~~ a year just to be able to see in the dark! 
Is it possible that candles would actually cost less?) 

By the way, did you know that the FIND operation can look for the 
occurrence of a character string anywhere within a field? Yes, it can. 
That means, for instance, that it might be interesting to do something 
like this: Select the FIND option and tell it to print out all the records 
that contain the character string "CAR" in the "Purpose" field. It will 
give you a list of all payments that you indicated as having any reference 
to cars: repairs, registration, and inspection fees, etc. 

A little thought with that fertile imagination of yours and I am sure 
you will see lots of other possibilities. 

INVESTMENT PORTFOLIO 

One of the aggravations of playing the stock market (besides buying at 
the top and selling at the bottom) is keeping track of all of your buy /sell 
transactions. But accurate records are a must. Not only do they tell you 
the score, but they are required in order that you can correctly tell Uncle 
Sam his score. 

A data base file formatted along the following lines can be a big 
help in maintaining accurate records and keeping yourself up to date on 
the overall performance of a portfolio. 

FORMAT BY FIELD B, NAME, SIZE, TYPE: 

SYMBOL 
COMP. NAME 
4t SHARES 
BUY PRICE 
BROKER FEE 
BUY DATE 
SELL PRICE 
TRANS. FEE 
SELL DATE 
NOTES 

6A 
20 A 
4N 
6 N 
4N 
SN 
6N 
4N 
SN 

40 A 

The field assignments for this application are pretty straight­
forward. The first two are reserved for the ticker-tape symbol and name 
of the company. 

The third field is numeric, as are all of the remaining ones except 
the last. It is used to hold the number of shares involved in the 
transaction. 



DATA BASE APPLICATIONS 75 

Then there are fields for the buy price and broker fee. In this 
example it is assumed that the total price for the lot is entered as well as 
the total broker's fee.Using totals here allows the data base management 
program's TALLY operation to perform more valuable functions than if 
the per-share price was recorded. (Of course, you could always add 
another field to hold this information!) It is also assumed that the price is 
entered to the nearest whole dollar. (If you want to keep track of prices 
right down to the last cent, then you might want to allow a few more 
digits in the price-related fields.) 

The sixth field stores the date on which the assets were purchased. 
Note that eight digits are reserved for the date. The format suggested for 
this application is: year-month-day, such as 19820205 for February 5, 
1982. This format allows the SORT option to arrange the file in 
chronological order if the "Date" field is selected as the key. 

This is followed by fields for the total price at which the investment 
was sold and any selling-related fees. 

The next field stores the date on which the assets were no longer 
owned by you. 

Finally, there is an alphanumeric field for keeping miscellaneous 
notes about the transactions. 

Update as You Go Along 

In this type of application, you would typically keep your file on a 
diskette. This file (you might name it "STOCKS") would be loaded into 
memory whenever you wanted to update it. After updating, you would 
save the revised edition back on a diskette. 

A typical entry might appear as shown here: 

SYMBOL: ATT 
COMP. NAME: AMERICAN TEL & TEL 
# SHARES: 11110 
BUY PRICE: 5725 
BROKER FEE: 125 
BUY DATE: 1982021115 
SELL PRICE: 6!1111!!1! 
TRANS. FEE: 35 
SELL DATE: 19820226 
NOTES: SHORT TERM GAIN 

Of course, until you actually disposed of an investment, fields 7, 8, 
and 9 (and possibly 10) would not be used. 

Analyze When Ready 

You can analyze your portfolio anytime you want. First, of course, you 
can always get a neat listing of all or part of your transactions to date. 
This listing can be arranged according to buy or sell date (chrono-



76 DATA BASE MANAGEMENT FOR THE APPLE 

logically) or by the stock's symbol or corporate name. Just sort on the 
desired field before obtaining the listing. Remember, too, that you can 
suppress unwanted information from the display or printed list. 

But there are much more powerful options than just having a neatly 
arranged list. You can tally on the "Buy Price" and then "Sell Price" 
fields. Depending on the condition of your file and the range of records 
over which you perform the summation, you can obtain several vital 
figures. 

If your file is arranged chronologically by sell date, then you will be 
able to separate those stocks that have been "turned-over" from those 
that you currently hold.You can then tally over the appropriate range of 
records to determine your total current investment holdings. Or you can 
tally the buy price and then the sell price over the range of records that 
have been "turned-over." Subtracting the sell total from the buy total 
gives you a gross profit. (You are doing this for profit, aren't you?) You 
can obtain your net by factoring in broker's and transaction fees. (Those, 
too, can be obtained using an appropriately bounded TALLY operation.) 

If, as shown in the example, you make entries such as "loss" or 
"gain" in the "Notes" field, you can make additional use of the FIND 
option. Thus, if you want to ascertain all your loss issues or study your 
gains, then you merely specify "loss" or "gain" in the search directive. 
The computer will dutifully bring up those transactions for your review. 

Now You Are on Your OWn 

The many examples that have been provided in this section are intended 
to give you ideas. You are now aware of many ways in which this highly 
versatile program can be applied. Don't be afraid to experiment. The 
only thing you have to lose is a little time-time that you will gain back 
through the more effective use of this powerful tool that such 
experimentation invariably brings! 

May all your applications of the program be profitable. 



DATA BASE MANAGEMENT FOR THE APPLE 

A TECHNICAL 
OVERVIEW 

The remaining material in this book is provided to satisfy the curiosity of 
advanced users. It provides technical information on the structure of the 
program and its implementation. A thorough understanding of the 
material in this section will be helpful to those users who might want to 
expand or modify the capabilities of the program. 

It should be emphasized that this section is intended primarily for 
those readers who have a knowledge of programming. It is not necessary 
to read this section in order to utilize the program. 

Program Design Philosophy 

Any programmer who creates programs must develop or select certain 
guidelines in the design stages. These criteria influence various 
decisions. Tradeoffs must be made between various options. 

Some of the key considerations during the development of this 
program centered around these factors: simplicity, so that the basic 
operation of the program might be understood by others; ease of use by 
unskilled operators; modularity so that advanced users could consider 
and implement design changes to meet their own special requirements; 
compactness so that sufficient memory would be left available for storage 
of a meaningful data base; and J/0 integrity, so that inadvertent operator 
directives would not result in the unintentional destruction of the data 
base or disruption of the program. 

The factors mentioned in the preceding paragraph, for instance, 
were given more importance than such parameters as speed of program 
execution, efficiency of operation (from an algorithmic viewpoint), or 
fancy screen displays. 

Of course, every programmer tends to emphasize different 
parameters. The choices are often a matter of personal taste. Conse­
quently, some readers may disagree with the design criteria I selected. 
That is fine. Everyone is entitled to their opinion. And with the 

77 



78 DATA BASE MANAGEMENT FOR THE APPLE 

information provided here, everyone with sufficient programming 
knowledge, whether they agree or disagree with any or all of the design 
aspects, will be free to proceed to modify and adapt the program as they 
see fit. 

How the Data Is Organized 

Each record entered by the user is stored in a string array labeled B$. 
This array is dimensioned as B$(999). Thus, theoretically, up to 1000 
records can be stored. However, due to 1/0 limitations and other 
considerations, the user is restricted to using records that are referenced 
by numbers in the range of 1 through 999. Since array elements are 
numbered beginning with 0. the physical array elements are always one 
less in value than that referenced by the user. Hence, when the user 
specifies manipulation of record number one, the program will actually 
deal with array element number zero. Because of this, array element 
number 999 is never actually used to store a record (as it would be the 
one-thousandth). Thus, this element effectively serves as a "guard" 
element. There are times, when performing selected data base manipu­
lating operations, that having such an extra element available can be 
useful. (Can you think of any?) 

Each element of the array used for storing records is limited by 1/0 
bounds (placed in the program) to a maximum of 236 characters. The 
theoretical limit for a string array element (imposed by Applesoft) is 255 
characters. I stayed shy of this limit to: (1) provide a few "guard" 
characters during operations such as CHANGE when it is necessary to 
split records in order to insert changes, and (2) leave room for advanced 
disk operations that might require the use of additional "guard" 
characters. 

Control Arrays 

Several other arrays are used to supplement and control the manipula­
tion of information stored within records. One is referred to as the Field 
Name Array and has the variable designation A$(0) through A$(39). 
Thus, there can be up to 40 named fields in a record. 

A numeric array (versus a string array) having elements A(0) 
through A(83) serves several other purposes. The first 40 elements, A(0) 
through A(39), are used to store the number of characters assigned to 
each field. The next 40 elements, A(40) through A(79), are used to 
indicate whether the field is alphanumeric or numeric. If the associated 
field is alphanumeric, then these elements contain the value zero. If the 
associated field is numeric, then the corresponding element contains the 
value one. 

Element A(80) is used to store the total number of fields a user 
assigns to a record format. 



A TECHNICAL OVERVIEW 79 

Element A(81) holds the current file record count or end of file 
marker. When used as a counter, its value is equal to the actual number 
of records present in the file. When used as a pointer, it points to the next 
array element in B$( ) where a record may be appended to the file. 

Element A(82) stores the maximum number of records a file is 
permitted to hold. (This value is a function of the record format and the 
amount of user memory available in a system.) 

Element A(83) stores the maximum number of characters allotted 
to a record. It is obtained by summing the number of characters 
permitted in each field of a record format, that is, the values held in 
elements A(~) through A(39) for whatever number of fields have been 
assigned. 

Still another array is used during selected I/0 operations. This 
array consists of elements B(~) through B(39). During, for instance, the 
LIST operation, the elements corresponding to assigned fields contain 
the value zero if the associated field is to be displayed or printed. They 
contain a one if the output is to be suppressed. 

Storing Files 

The current status of any data base being manipulated by the program is 
easily stored for later recall. All that is necessary is that the A( ), A$( ), 
and B$( ) array elements be saved. This is what is actually accomplished 
when the user elects to save a data base on a diskette. 

Restoring a file from diskette to memory is just a reverse of the 
process indicated in the previous paragraph. The array elements are 
loaded into memory. They contain all the information necessary for the 
program to ascertain the format of the file along with the information 
contained in the current data base. 

Major Routines 

The following discussion will outline the operation of each major portion 
of the data base management program. For a detailed analysis, refer to 
the actual program listing in Chap. 3 and the line-by-line commentary of 
the listing in Chap. 6. 

First, it may be noted that the program is highly modular. Each 
particular function or operation is assigned a block of line numbers for 
easy reference. Here is a summary of the major routines arranged 
according to their starting line numbers: 

1000 - RECORD FORMATTING ROUTINE 
2000 - APPEND ROUTINE 
3000 - INSERT ROUTINE 
4000 - CHANGE ROUTINE 
5000 - DELETE ROUTINE 
6000 - ~IST ROUTINE 



------------~ -- --

80 DATA BASE MANAGEMENT FOR THE APPLE 

7000 - FIND ROUTINE 
8000 - SORT ROUTINE 
9000 - TALLY ROUTINE-
10000 - ERASE FILE ROUTINE 
11000 - DISK CATAL06 ROUTINE 
12000 - PROGRAM EXIT ROUTINE 
20000 - READ DATA BASE FILE FROM DISKETTE 
30000 - SAVE DATA BASE FILE ON A DISKETTE 
40000 - PRIMARY MENU ROUTINE 
41000 - SECONDARY MENU ROUTINE 
50000 - ALPHANUMERIC INPUT SUBROUTINE 
51000 - NUMERIC INPUT SUBROUTINE 
59500 - ERROR MESSAGES 
59800 - MISCELLANEOUS UTILITY SUBROUTINES 

The Record Formatting Routine-This routine first checks to 
make sure that a file is not already present in memory. If one is present, 
the routine immediately exits to the Primary Menu. 

To format a new file, the routine accepts operator inputs specifying 
field names, length, and type. Field names are stored in the appropriate 
elements of the Field Name Array A$( ). Field lengths and type 
designations are placed in the appropriate elements of A( ). Inputs are 
tested to verify that field length and record length restrictions are not 
exceeded. This routine loops until a maximum of 4~ fields has been 
defined, the allowable record length is reached, or the user indicates that 
the necessary fields have been defined. The routine normally exits to the 
Secondary Menu. 

The APPEND Routine-This routine first checks to make sure 
that the file is not already filled. Provided that it is not, it accepts input to 
the next available record position on a field-by-field basis. The routine 
displays prompts that include the record number, field name, maximum 
allowable length, and type. Inputs are tested and constrained to meet the 
requirements of the record format. The routine loops until the file is full 
or the user indicates that the appending session may be terminated. The 
routine normally exits to the Secondary Menu. 

The INSERT Routine-Upon entry, the routine checks to see that 
the file is not already filled. Provided that it is not, the routine queries the 
user for the file position at which new records are to be inserted. The 
user-specification is tested for validity. Upon validating an insertion 
position, the routine "expands" the current file to make room for the 
inserted record. This is accomplished by moving all of the records above 
the insertion position (in the B$ array) up one element. The routine then 
accepts user inputs on a field-by-field basis, just as is done for the 
APPEND operation. Inputs are tested and constrained to conform with 
the current record format. When a record has been inputted, the routine 
queries the user as to whether another record is to be inserted at the 
current position. If so, the routine repeats the procedure. This routine 
normally exits to the Secondary Menu. 



A TECHNICAL OVERVIEW 81 

The CHANGE Routine-Upon entry, this routine ascertains that 
the file is not empty. Provided that it is not, the routine prompts the user 
to input the field numbers indicating which fields within a record are to 
be changed. The routine then prompts for the number of the first record 
that is to be modified. It then accepts user inputs of new data for those 
fields that the user previously indicated would be altered. Prompts are 
shown for each field. User inputs are tested and constrained to conform 
to the record format. When all the relevant fields have been inputted, the 
operator is asked if the next record in the file is to be changed. If so, the 
process is repeated. The routine normally exits to the Secondary Menu. 

' The DELETE Routine-The routine first checks to make sure the 
file is not empty. The user is then prompted for the range of records to be 
removed. This specification is checked for validity. If valid, the routine 
moves all records higher in number than the upper bound specified by 
the user, down to the lower bound specified by the user. This is 
accomplished by directly manipulating the contents of the B$( ) array. 
Record positions vacated (at the end of the file) by this operation are then 
nulled. The file's record counter, A(81), is then updated to reflect the 
file's current status. That is, the number of records removed is 
subtracted from the original value in A(81). The revised record count is 
displayed for the user at the conclusion of the deletion process. The 
routine normally exits to the Secondary Menu. 

The LIST Routine-The routine initially checks that the file is not 
empty. Provided that it is not, it reminds the user of the highest 
numbered record in the file. It then prompts for the range of records to 
be outputted. Next, the routine asks for the numbers of any fields that 
are to be suppressed. Inputs are tested for validity. The user is given the 
option of having record numbers suppressed. The user also dictates 
whether output will be to the system's screen or an external printer. At 
the beginning of the listing operation, the names of the fields, their 
maximum length, and type are outputted as a header. The records 
requested are then outputted to the appropriate device. This routine 
normally exits to the Secondary Menu. 

The FIND Routine-The routine tests to see that the file is not 
empty. If not, it reminds the user of the highest numbered record in the 
file. It then prompts for the range of records to be searched. Next, the 
routine asks for the numbers of any fields that are to be suppressed. 
Inputs are checked for validity. The user can specify whether record 
numbers are to be displayed and selects output to the screen or printer. 
Then the user is prompted to give the name of the field that is to be 
searched within the records. If an invalid name is inputted, the routine 
displays a list of the field names assigned to records in the file. Finally, 
the user inputs the character string that the routine is to look for within 
the specified field. The routine sets up a pointer to access the field that is 



l 
I, 

82 DATA BASE MANAGEMENT FOR THE APPLE 

to be searched within each record. A header is displayed showing the 
range of records being scanned and the search criteria, then the names of 
the fields, their maximum length, and type. The search string is then 
matched against all possible positions within the field being examined. 
If a match is found anywhere within the field, then the unsuppressed 
fields of the record are outputted to the appropriate device. The process 
continues until the specified range of records has been examined. 
However, if the output is being directed to the video screen, the process 
can be terminated earlier by an appropriate user response. The routine 
normally exits to the Secondary Menu. 

The SORT Routine-The routine initially checks that the file is 
not empty. Then, after displaying the highest numbered record in the 
file, it queries the user for the starting and ending numbers (range) of 
records that are to be sorted. The range specified is tested for validity, 
including the requirement that it span at least two records. The routine 
prompts for the name of the field that is to be used as the sort key. If a 
valid name is not specified, the current field names are reviewed for the 
user. A pointer is set up to access the key field. The portion of the file 
specified is then arranged in alphabetical or numerical (if the key field is 
numeric) order. The method used is commonly known as the Shell Sort. 
Note that when a test of the key field indicates that a change in position 
needs to occur, then the entire contents of the records involved are 
swapped within the file. Since a sorting operation can take a number of 
minutes for a large file, a "sorting" message is displayed during the 
process. This routine normally exits to the Secondary Menu. 

The TALLY Routine-The routine checks that the file is not 
empty. It then advises the user of the highest numbered record in the file. 
Next it prompts for the range of record numbers that are to be summed. 
The range specified is checked for validity. It then asks for the name of 
the field that is to be tallied. If an invalid name is given, the routine 
displays the current list of field names. If the field named is not numeric 
in type, the routine notifies the user. The procedure is then terminated by 
exiting to the Secondary Menu. If the field is numeric, then the contents 
of that field are summed over the range of records specified. The results 
of the summing operation are then displayed to the operator. Upon cue 
from the user, the routine exits to the Secondary Menu. 

The Erase File Routine-This routine first verifies that the user 
does indeed want to erase the current data base file in memory. If so, it 
clears all variables. This effectively erases any data file that was in 
memory. The routine then exits to the Primary Menu. 

The Disk Catalog Routine-After establishing an error trap to 
capture any I/0 errors, this routine uses the standard DOS directive to 
display a diskette's catalog. An I/0 error condition causes the routine to 
terminate (with an appropriate message to the user) and exit to the 



A TECHNICAL OVERVIEW 83 

Primary Menu. Otherwise, the routine performs a normal exit, at the 
conclusion of the cataloging process, to the Primary Menu. 

The Program Exit Routine-This routine advises the user that 
leaving the program will destroy any data base currently in memory. It 
then prompts the user to confirm the directive. If it is affirmed, the 
program is terminated by exiting to the system monitor. Otherwise, the 
routine returns to the Primary Menu. 

The Read Data Base File Routine-This routine initially checks 
to see that there is not already a file in memory. If there is, the routine 
immediately exits to the Erase File routine. Otherwise, the user is 
prompted for the name of the file that is to be inputted from a diskette. 
An I/0 error trap is established. DOS commands are then used to open 
the specified file and read in data in the following order: the A( ) array 
(field characteristics), the A$( ) array (field names), and the B$( ) array 
(actual data records). Should there be an I/0 error during this process, 
the routine is exited via an error routine. Otherwise, the routine 
normally exits to the Primary Menu. 

The Save Data Base File Routine-The routine first checks to 
ascertain that a data base file, containing some data, is present in 
memory. If not, the routine is immediately terminated by exiting back to 
the Primary Menu. Provided that a data file is present, the routine 
prompts the user for a file name under which to store the data file on a 
diskette. The routine establishes an error trap for use during disk I/0 
operations. It then uses DOS directives to create a file with the user­
specified name on a diskette. The method used will overwrite any 
previously existing file with the same name. Once the file has been 
created, the data file in memory is written to the diskette in the following 
order: the A( ) array (field and file parameters), the A$( ) array (field 
names), and the B$( ) array (data records). Should an I/0 error occur 
during the process, then the routine exits via an error routine. 
Otherwise, the routine concludes by exiting back to the Primary Menu. 

The Primary Menu Routine-This routine displays the primary 
program options available to the user on the screen in menu format. It 
then "captures" the keyboard and waits for a valid menu selection. 
Invalid selections are ignored. When a valid menu option key is pressed, 
program control passes to the appropriate routine. 

The Secondary Menu Routine-This routine displays the sec­
ondary program options available to the user on the screen in menu 
format. It then scans the keyboard, waiting for a valid menu selection. 
Invalid selections are ignored. Pressing a valid menu option key results 
in the program passing control to the appropriate routine. 

The Alphanumeric Input Subroutine-This routine establishes 
an input buffer and accepts keyboard inputs to this buffer. The routine 

.... 



84 DATA BASE MANAGEMENT FOR THE APPLE 

deletes the previous character if the backarrow character is detected, 
unless the buffer is empty. The routine also limits the number of 
characters inputted to the buffer. The routine exits to the calling routine 
when the code for the RETURN key is detected, unless the buffer is 
empty. The RETURN key is ignored when the input buffer is empty. 

The Numeric Input Subroutine-This routine calls upon the 
Alphanumeric Input subroutine to fetch a string of characters from the 
keyboard. It then checks this string to ascertain that it contains a valid 
numeric input. If an "integer" flag is set, it will also verify that the value 
received is strictly integer. If the string is found invalid, the content of 
the input buffer is erased, an appropriate error message is displayed, 
and the input process is repeated. Receipt of a valid numerical entry 
causes the routine to exit to the calling routine. 

Error Messages-Error messages used by more than one routine 
are grouped together in this part of the program for reference purposes. 
These messages are placed into a string variable as required by the 
calling routine. Program control then passes back to the calling routine. 

Miscellaneous Utility Subroutines-Commonly used "utility" sub­
routines that are used to control and format the screen display are 
grouped at the end of the program. 

Notes about Line Numbering 

Line numbers are separated by increments of at least 10. Where possible, 
logical breaks within routines are indicated by resuming numbering at 
the next hundreds level. Subroutines are grouped at the high end of each 
section. 

Thus, for example, the Record Formatting routine has subdivisions 
that begin at lines 1000. 1100, 1200, and 1400. It also has a subroutine 
that begins at line 1900. 

This line numbering convention provides plenty of room for users to 
insert additional instructions within each section. Such insertions can 
generally be accomplished without interrupting the overall structure of 
the rest of the program. 

There are also plenty of areas in which to place entire new sections 
if desired. For instance, blocks of line numbers for new routines could be 
assigned in the range 13000 through 19999. 

Refer to the program listing in Chap. 3 and the line-by-line 
program commentary in Chap. 6 for more detailed information on the 
program's structure and operation. 



DATA BASE MANAGEMENT FOR THE APPLE 

PROGRAM 
COMMENTARY 

This chapter is devoted to providing the kind of documentation that 
programmers (and potential programmers) generally find useful. It 
consists of three main sections: (1) a detailed line-by-line commentary of 
the BASIC source listing, (2) a table of variables usage, and (3) a table of 
line number cross-references. 

The line-by-line commentary refers to the individual program lines 
contained in the BASIC source listing. (That listing is provided at the 
end of Chap. 3.) It is hoped that reference to this commentary along with 
the actual listing will provide the interested, qualified programmer 
with about all there is to know about the operation and "why-for" of the 
data base management program. Chances are good that novice 
programmers, too, will be able to learn something from this detailed 
explanation. 

The table of variables usage is prefixed by a brief summary of the 
major purpose(s) assigned to each variable name. The table itself is a 
valuable reference if you are planning to make any alterations to the 
program. It enables you to ascertain each and every line in which the 
variable is used. Thus, you can check that any changes you propose (for 
the usage of those variables) will not unduly impact the operation of 
another section of the program. 

Finally, the table ofline number cross-references further assists the 
adventurous program modifier. It lists each line number that contains a 
reference to other line number(s), such as through GOTO, GO SUB, and 
THEN statements. If, for instance, you decide you want to remove a 
block of code from the program or change the operation of a subroutine, 
you check this table. By doing so you can ascertain whether any other 
statement lines refer to the section you are eliminating or changing. If so, 
check each reference to make sure your alterations will not upset the 
apple cart. 

With all this information at your fingertips, you will be in a good 
position, if you are so inclined, to: (1) learn just about all there is to know 

85 



86 DATA BASE MANAGEMENT FOR THE APPLE 

about the actual operation of the program, and/or (2) proceed (perhaps 
with the help of the next chapter) to modify and enhance the program to 
suit your own special needs and preferences! 

Line-by-Line Commentary 

1 Jump to Primary Menu at program startup. 
10"" Check to see that file has not already been defined. 
1010 If file already exists, then clear screen. Notify user of the condition. Give 

advice. Set delay value. Call delay routine to provide user time to read 
message. 

1 "2" Go back to the Primary Menu. 
1030 Entry point for defining file. Initialize all variables. Call subroutine 

to DIMension arrays. 
1100 Clear screen. 
1110 Prompt user for name of a field. 
112" Limit name length to 10 characters. Accept user's alphanumeric input. 
113" Stuff field name into Field Name Array. 
12"" Provide some blank lines on the display. 
121" Prompt user for length of field. Advise user of the maximum permitted. 
122" Limit input to 2 digits. Specify integer only. Accept numeric input. 
123" Check length specified. If not valid, set up error message. Call error 

display routine. Erase last input from display. Loop back to try again. 
1240 See if new field length would result in excessive record length. If so, set 

up error message. Call display routine. Erase last input. Loop back to try 
again. 

1250 Stuff valid length into appropriate element of Length Array. 
1260 Prompt user to classify field as (A)lphanumeric or (N)umeric. 
1270 Input limited to one character. Accept alphanumeric input. 
128" If field designated alphanumeric, then stuff a '0' into appropriate Field 

Status Array element. Skip ahead. 
129" If operator does not respond appropriately, then set up an error message. 

Call error display. Erase input. Loop back to try again. 
13"" Stuff a 'l' into the Field Status Array for a numeric field. 
1310 Update record character count. If maximum permitted length reached, 

then force a halt to field definitions. 
1320 Also force a halt if have reached maximum number of fields 

allowed (40). 
133" If program reaches here, then can clear the display. 
1340 Ask user if another field is to be defined. 
1350 Limit response to one character. Accept alphanumeric input. 
1360 If user is continuing, then increment field counter. Loop back to define 

next field. 

J 



PROGRAM COMMENTARY 87 

137'1 If operator does not respond appropriately, then set up error message. 
Display message. Erase input from screen. Loop back to try again. 

14'1'1 If user finished defining fields, then clear the screen. 
141 '1 Acknowledge conclusion of field definitions. Provide a few blank lines on 

the display. 
142'1 Set element A(8~) of Field Length Array to indicate the actual number 

of fields in a record. Initialize element A(81) of this array to serve as a 
counter of the number of records stored in the file. 

143'1 Now size up memory-leave some room for variables and possible future 
modifications by the user. Save the number of characters per record in 
element A(83). Determine the number of records that can fit in available 
memory. Limit the maximum number of records to 999 to avoid 
DIMensioning problems. 

144'1 Notify users as to how many records may be stored. Save the maximum 
allowable number of records in element A(82). 

145'1 Set delay value. Provide delay so user can read display. Set File Defined 
flag. Go to Secondary Menu. 

19'1'1 Set File Defined flag. DIMension arrays used by data base. Return to 
caller. 

2'1'1'1 APPEND ROUTINE. Call subroutine to see if file is full. If so, exit right 
back to the Secondary Menu. 

21 '1'1 Initialize record Character Position counter and the Field counter. Clear 
current record to null condition. 

22'1'1 Clear display. Convert current record number to string format for 
neater display. Throw function notice on the screen. Provide a few blank 
lines to delineate title. 

221 '1 Call subroutine to display Append status and accept input for a field. 
222'1 Append the field data to the current record. 
223'1 Skip ahead if have accepted as many fields as have been specified for a 

record. 
224'1 Otherwise, update the Character Position counter. Then increment the 

Field counter. Loop back to get the data for the next field. 
225'1 Update the Records counter. 
226'1 Provide separation on the display. Ask if user wants to enter another 

record. 
227'1 Limit response to a single character. Accept alphanumeric input. 
228'1 If user appending another record, then jump back to the start of this 

routine. 
229'1 Otherwise, exit to the Secondary Menu. 
28'1'1 Subroutine to accept data in fields. Display current record number 

and show the maximum number of characters permitted in the current 
field. 

281 '1 Check to see if current field is alphanumeric. If so, display ALPHA 
and skip next line. 

282'1 When field is numeric, tell the user. 
283'1 Now display the field number and the user-defined name of the field. 



88 DATA BASE MANAGEMENT FOR THE APPLE 

Line-by-Line Commentary (continued) 

2841i' Display a line of dashes to separate the header from the user's input. 
Provide a few blank lines for additional separation. 

2851i' Limit the user's input to the number of characters defined for the 
current field. If field is numeric, then clear the Integer flag to allow 
floating point values. Accept numeric input. Skip next line if field is 
numeric. 

2861i' If field is alphanumeric, then accept alphanumeric input. 
2871i' If input does not fill field, then fill rest of field with spaces. 
2881i' Exit subroutine by returning to caller. 
291i'li' Subroutine to determine whether file is full . Clear the Error flag. See if 

the current number of records in the file equals (or exceeds, for good 
measure) the number of records allowed in the file. If it does, then clear 
the display and throw up the 'File is Full' message. Set up the delay 
subroutine. Provide some time for the user to get the message. 

291 Ii' Exit to the caller. 
31i'li'li' INSERT ROUTINE. Call subroutine to see if file is full. If so, exit right 

back to the Secondary Menu. 
31i'1 Ii' Call subroutine to see if file is empty. If Error flag is set upon return, 

then file is empty so clear the flag, provide a few blank lines, then tell the 
user to use the APPEND routine. Set delay value. Call delay routine so 
user has time to read message. Return to the Secondary Menu. 

311i'li' Call routine to display function header. Call subroutine to identify last 
record in the file. Provide a couple of blank lines as a separator. 

311 Ii' Query user for the position at which to start inserting record(s). 
3121i' Limit response to maximum of 3 digits, specify integer values only. 

Accept numeric input. If user inputs zero(')), then abort this function 
and return to Secondary Menu. 

3131i' If record specified is not within the range of those currently in the file, 
then set up an error message. Call the subroutine to display error 
message to the user. Erase the last input line. Loop back to try again. 

3141i' Form a loop going from the highest numbered record in the file on 
down to the record specified by the operator. (Remember, the array 
element is one less.) Move all the records in this range 'up' one position to 
make room for the insertion. 

3151i' Initialize Character Position counter and Field counter. Convert 
insertion position to a string value to enable a neater display. Null the 
Record array at the insertion position. 

3161i' Display the function header. Provide a few blank lines as separator. Call 
subroutine to input data for the current field. 

3171i' Add the field to the record being inserted. See if have processed all fields 
in the record. Skip next line if so. 

3181i' Otherwise, update the Character Position counter and also increment the 
Field counter. Go back to get next field. 



PROGRAM COMMENTARY 89 

3200 Update Records counter. Call subroutine to see if file is full. If Error flag 
is set here, then clear the flag and exit to the Secondary Menu as file is 
full. 

3210 Otherwise, provide couple of blank lines and query user about inserting 
another record. 

3220 Limit response to 1 character. Accept alphanumeric input. Ifresponse is 
not (Y)es, then exit to Secondary Menu. 

3230 If (Y)es, then advance Insertion pointer. Go back to insert another 
record. 

3900 Subroutine to display header for the INSERT operation. 
4000 CHANGE ROUTINE. Call subroutine to see if file is empty. If flag is set, 

clear flag, go back to the Secondary Menu. 
4010 Display function header. Clear Field Status elements (used to mark 

fields that will be changed). 
4020 Provide a couple of blank lines. Query user for the fields to be altered. 
4030 Call subroutine to identify fields that are to be altered. 
4040 Form loop to scan Field Status array elements. Check to see that at least 

one field is marked for change. If find any, then raise a flag. 
4050 Loop until array scanned. If flag set, then clear flag and skip over next 

line to start processing changes. 
4060 If there are no fields marked for change, then return to the Secondary 

Menu. 
4100 Display function header. Call subroutine to display the number of the 

last record in the file. Provide a couple of blank lines as a separator. 
4110 Query user for number of the first record to be altered. 
4120 Limit response to three digits, integer only. Accept numeric input. Abort 

to Secondary Menu if record number ~ is specified. 
4130 If record number specified is not valid, then set up an error message. 

Display message. Clear line just inputted. Go back to try for a valid 
record number. 

4140 Initialize Character Position counter. Convert record number to a string 
for a neater display. 

4150 If field not marked for change, then skip over "changes" section. 
4160 "Changes." Display function header. Provide a few blank lines after the 

header. Call subroutine to input data to a field. 
4170 Throw parenthesis around record being processed as "guard" characters. 
4180 Save everything in the record up to the field that is being modified. 

Append the new field data. Then append the rest of the original record. 
4190 Now strip off the "guard" characters. 
4200 See if have processed all fields in the record. If so, then skip next line. 
4210 Update Character Position counter. Increment the Field counter. Go 

back to process next field. 
4220 If have processed all records in the file, then exit to the Secondary Menu. 
4230 Otherwise, provide a couple of blank lines, then query the user as to 

whether the next record is to be altered. 



90 DATA BASE MANAGEMENT FOR THE APPLE 

Line-by-Line Commentary (continued) 

4240 

5120 
5130 
5140 

5200 

5210 

5700 

5710 

5720 

5730 

5740 

5750 

5760 

5770 
5790 

Limit response to a single character. Accept alphanumeric input. If 
response if not (Y)es, then exit to Secondary Menu. 
Otherwise, advance Records counter and go back to do next record. 
Subroutine to display header for the CHANGE operation. 
DELETE ROUTINE. Call subroutine to see if file is empty. If flag set, 
then clear flag and exit to Secondary Menu. 
Clear display. Display function header. Show number of the last record 
in the file. 
Call subroutine to get range of records to be deleted. If flag is set, then 
clear the flag and abort operation by going back to the Secondary Menu. 
Clear screen. Acknowledge records specified by user. 
Ask user to verify range of records being deleted. 
Limit response to 1 character. Accept alphanumeric input. If response 
not (Y)es, then go back to re-specify range. 
Calculate the number of records to be deleted. If the highest numbered 
record being deleted is less than the highest numbered record currently 
in the file, then form a loop. Set the loop counter for the number of 
records that need to be shifted in the file. Shift the records beyond those 
being deleted over the former records to take up the gap. Loop until all 
the remaining records beyond the gap have been moved. 
Set a loop counter equal to the number of records being deleted. 
Decrement the Records counter. Null out the now unused Records Array 
element. Loop until finished. Display the number of records left in the 
file. Exit to the Secondary Menu. 
Subroutine to get range of records to be processed. Clear flag. Provide a 
few blank lines on the display. Query user for the first record number. 
Accept user input. If user inputs 'W, then set the flag as operation is to be 
aborted. Return to caller. 
If number specified is valid (within range of records currently in the 
file), then skip next line. 
Otherwise, set up error message. Display message. Clear list line of input 
from the screen. Go back for a better input. 
Save starting record number. Ask user for last record number to be 
processed. 
Accept user input. If user inputs '')', then set flag as operation is to be 
aborted. Return to caller. 
If number specified for last record is less than first number given or 
more than highest record number in the file, then set up an error 
message. Display the message. Erase the last user input from the 
display. Go back to try for a new value. 
Save the 'ending' record number. Exit to caller. 
Subroutine to accept numeric input having a maximum of three digits. 
Only integer values will be accepted. 



PROGRAM COMMENTARY 91 

5811'l0 Subroutine to see if file is empty. Clear flag. See if Records counter is 
zero. If so, set error flag and clear the display. Notify user that file is 
empty. Set up a delay value. Call delay routine so user can read message. 

5810 Return to caller. 
5911'l0 Subroutine to display number of the last record in a file. Show current 

Records counter value. Set delay value, give user time to read screen, 
then exit to caller. 

611'lll'l0 LIST ROUTINE. See if file is empty. If so, clear flag and exit to 
Secondary Menu. 

61 !l'l0 Display function header. Then display the number of the last record in 
the file. 

6110 

6210 

6220 
62311'l 

62411'l 
62511'l 
6260 

6510 

6520 

65311'l 

65411'l 

Call subroutine to get range of records to process. If flag is set upon 
return, abort operation and exit to the Secondary Menu. 
Call subroutine to determine which fields user wants to suppress during 
the listing operation. 
Clear the screen. If Printer flag (C) is set, then issue command (in DOS 
format) to turn on external printer. Issue a few Iinefeeds. 
Call the subroutine to display the listing format. 
Form a loop over the range of records specified. (Remember that the 
array element is one less.) 
Call subroutine to output a record. 
Loop until have output records requested. 
Provide some more linefeeds so user can tear off paper. Turn off the 
external printer. Go back to the Secondary Menu. 
Subroutine to find out what fields user wants to suppress during a 
listing. Call subroutine to clear Field Status array elements. Then call 
subroutine to ask if user wants to suppress any fields. 
Limit response to a single character. Accept alphanumeric input. Skip 
next line if response is not (Y)es. 
Call routine to display operator directive. Call the subroutine that has 
user input the fields that are to be suppressed. 
Call subroutine that asks if user wants to suppress the display of record 
numbers. 
Limit response to one character. Accept alphanumeric input. If 
response is (Y)es, then set the Suppress flag (D) and skip the next line. 

65511'l Clear the Suppress flag as record numbers are to be shown. 
6560 Call subroutine that asks whether user wants to use screen or printer. 
6570 Limit response to a single character. Accept alphanumeric input. If 

response is (P)rinter, then set the Printer flag and return to the caller. 
6580 If response is invalid (neither P nor S), then set up error message. Display 

the message. Clear the previous input from the display. Go back and try 
for a valid response. 

6590 If response is (S)creen, then clear the flag and return to the caller. 
6611')!1') Subroutine to display record format. First display a title line. 
66111') Form a loop to scan the Field Status array elements. If the field is 

marked (1), then suppress output by jumping ahead. 

. I 



92 DATA BASE MANAGEMENT FOR THE APPLE 

Line-by-Line Commentary (continued) 

6620 If field number is less than 11) (only has 1 digit), then move over one space 
to make neat display. 

663(1.1 Now output the field number and user-defined field name. Use the 
length of the field name to calculate the number of spaces needed to keep 
the display neatly formatted. If the number of characters permitted in 
the field is less than 11), add one more space to keep the display tidy. 

6640 Display the field character size. Provide a space. If the field was 
specified as numeric, display 'N' for (N)umeric, then skip next line. 

6650 Otherwise, display 'A' for (A)lphanumeric. 
6660 Loop to output the format for the next field. When have finished, issue a 

couple of blank lines and exit to the caller. 
6700 Subroutine to output a record. Jump ahead if the Suppress flag is set. 
6710 Otherwise, output the record number enclosed in parenthesis. 
6720 Initialize the Character Position counter. Form a loop to check all fields 

in the record. Skip next line if Field Status element is set as this field is to 
be suppressed. 

6730 Output the contents of the field. 
6740 Update the Character Position counter. Loop back to output the next 

field. Add one linefeed between records. 
6750 If using printer, just return to the caller. 
6760 When outputting to the screen, provide a few blank lines. Give user the 

option of continuing listing or aborting. 
6 770 Wait for a key depression. If it is the <RETURN> key, then force the 

loop variable to a terminating value and exit to the caller. 
6780 Otherwise, just clear the screen and return to the caller. 
6800 Subroutine to mark fields for special processing. Advise user how to 

proceed. 
6810 Remind user how to terminate the input list. 
6820 Limit inputs to 2-digit integer values. Accept numeric input. If value 

outside range of valid field numbers, then issue error message, erase 
input from the display and try again. 

6830 Terminate this subroutine when user inputs 'W. 
6840 Set the current Field Status array element to a 'l' to serve as a marker. 

(Remember, array element is one less than field specified.) Then erase 
the current input line from the display and jump back to get another 
input. 

6900 Subroutine to initialize the Field Status array elements to zero. Form 
loop, zero each element, exit to caller. 

6910 Message subroutine. 
6920 Message subroutine. 
6930 Message subroutine. 
6940 Message subroutine. 

J 



PROGRAM COMMENTARY 93 

71!11!11!1 FIND ROUTINE. See if file is empty. If so, clear the flag and return to 
the Secondary Menu. 

711!11!1 Clear the screen. Display function header. Call subroutine to display the 
last record number in the file. 

7111!1 Call subroutine to get record numbers to process. If flag is set upon 
return, then clear flag and abort operation by returning to the Secondary 
Menu. 

721!11!1 Call subroutine to see what fields, if any, are to be suppressed from the 
output. This subroutine also finds out if the user wants to output record 
numbers and whether output is to the printer or screen. 

7211!1 Clear the screen. Ask user for the name of the field to be searched. 
7221!1 Limit response to 10 characters. Accept alphanumeric name. 
7231!1 Call subroutine that checks validity of a field name. If flag is set upon 

return, then could not find field name. Clear the flag and jump back to 
try again. 

731!11!1 Provide a few blank lines. Ask for the search string. 
7311!1 Limit length of search string to maximum length of the field being 

searched. Accept alphanumeric input. Provide a few more blank lines. 
7321!1 Initialize Character Position counter. If not processing the first field in 

the record, then loop to set up the Character Position counter to the start 
of the field that will be searched. 

7331!1 Clear the screen. If Printer flag is set, then issue command (in DOS 
format) to turn on the external printer. Issue a few linefeeds. 

7341!1 Display operation header. Show records being scanned. 
7351!1 Also verify the search string. Provide few blank lines for separation. 

Then call the subroutine that displays the output format. 
741!11!1 Form a loop over the range of records being searched. (The array 

elements are one less than values specified.) 
7411!1 Extract the specified field from a record. 
7421!1 Form a loop to position the search string to all possible locations within 

the field. 
7431!1 See if can find a match with the search string. Jump over output section 

if no match. 
7441!1 Call subroutine to provide output on a match condition. 
7451!1 Then force the loop variable to terminate the searching of the current 

field. 
751!11!1 Loop to continue search in current field. Loop to search next record. 
7511!1 Terminate the routine with some linefeeds. Turn off the printer. Go back 

to the Secondary Menu. 
791!11!1 Subroutine to check the validity of a field name. Start by initializing 

Valid flag to a negative value. Form loop to scan the names of all fields 
defined for records in the file. Look for a name match. If found, force 
the loop to terminate and set the Valid flag value to indicate the Field 
Name array element where the match occurred. 

7911!1 If no match, continue scanning field names. 



94 DATA BASE MANAGEMENT FOR THE APPLE 

line-by-line Commentary (continued) 

7920 If field name has been matched, then return to caller with the Valid flag 
pointing to the appropriate Field Name array element. 

7930 Otherwise, clear the display and tell the user that the field name given is 
not valid. Set a delay value. Call the delay routine so user has time to read 
message. Provide a few blank lines after the message. 

7940 Now display the valid field names for this file. 
7950 Form a loop to scan the Field Nam es array. Display each name. Set a 

delay value and provide some time between each name. Loop until have 
shown all names. 

7960 Now set the Error flag to notify the calling routine that the name given 
was not valid and exit to the caller. 

8000 SORT ROUTINE. See if the file is empty. If so, clear the flag and exit to 
the Secondary Menu. 

8100 Clear the display, then present the function header. Call the subroutine 
to display highest record number in the file. 

8110 Call the subroutine that gets range of records to process. If flag set upon 
return, then clear it and abort this operation by returning to the 
Secondary Menu. 

8120 See if range specified covers at least two records. If not, then set up an 
error message and call subroutine to show the message. Exit to the 
Secondary Menu. 

8200 Clear the display. Query user for the field to sort on. 
8210 Limit the input to 10 characters. Accept alphanumeric input. 
8220 Call subroutine to verify that a valid field name was entered. If flag set 

on return, name was not valid so clear the flag and jump back to try 
again. 

8300 Clear the display. Throw up message that lets the user know that a sort 
is in progress. Indicate the range of the record numbers being ordered. 

8400 Set starting and ending values to point to the records. (Remember, array 
elements are one less.) Initialize the Character Position counter. If not 
dealing with the first field in a record, then form loop to find the 
first character position in the specified field. 

841 Ii' Caiculate the number of records being sorted. 
8420 Take half that number (to the lowest integer value). 
8430 Calculate the remaining number of records. 
8440 Initialize the Swap flag. 
8450 Form a loop to process a portion of the records being ordered. 
8460 Form a pointer to the array elements holding the records. 
8470 If the key field is numeric, then jump ahead. 
8480 Compare the field in the current record against the same field in the 

'other part' of the file. If current field is less than or equal in value 
(alphanumerically), then no swap is needed, so skip over 'swapping' 
instruction lines. 

l 



1 
PROGRAM COMMENTARY 95 

8490 
85~0 

8510 
8520 

8530 

8540 
8550 
8560 
8570 

8580 
90~0 

9100 

9110 

92~0 
9210 
9220 

9230 

93~0 

9310 

9320 
9330 
9400 

9410 
9420 
9430 

9440 
10~00 
10~10 

10~20 

Skip over the lines for comparing numeric fields. 
If field is numeric, convert strings to numeric values when doing the 
compare. Skip ahead if swap of records is not needed. 
'Swapping' instructions. Store the current record in a temporary buffer. 
Put the record from the 'other part' of the file into the current record 
position. 
Now place the contents of the temporary buffer into the vacated 'other 
part' of the file to finish the swap. 
Set the Swap flag after performing a swap. 
Loop to do the next compare. 
If the Swap flag has been set during a sweep, then repeat the sweep. 
If the Swap flag has not been set during a sweep, then go back to cut the 
partially sorted file in half. Repeat the process until the requested 
range of records is in order. 
Exit to the Secondary Menu when the sort is finished. 
TALLY ROUTINE. See if file is empty. If so, clear flag and go back to 
the Secondary Menu. 
Clear display. Put up function header. Tell user last record number in 
the file. 
Get the range of records to be processed. If flag set upon return, clear it 
and abort operation by going back to the Secondary Menu. 
Clear display. Query user for name of field that is to be summed. 
Limit response to 10 characters. Accept alphanumeric input. 
See if the specified name is valid. If not, clear the flag and jump back to 
try it again. 
Check to see that field specified is indeed numeric. If not, set up error 
message. Display the error message and exit to the Secondary Menu. 
Initialize summation register. Initialize Character Position counter. If 
not dealing with the first field in the records, then form loop to 
determine the starting character position of the specified field. 
Form loop over the range specified. (Remember the array elements are 
one less.) 
Update the summation register with the value in the field. 
Loop to sum over the range of records specified. 
When finished summing, clear the screen and announce the results of 
the tally. Show the name of the field summed. 
Show the range of record numbers included in the tally. 
Display the tally. 
Provide a few blank lines. Give user as much time as desired to view the 
results. 
Go back to the Secondary Menu when any key is pressed. 
ERASE FILE ROUTINE. Clear the display. 
Verify that user's command is to erase the current file. 
Limit response to a single character. Accept alphanumeric input. 



96 DATA BASE MANAGEMENT FOR THE APPLE 

Line-by-Line Commentary c continued) 

11 rarara 
11ra1ra 
11ra2ra 

11ta3ta 

12rarara 

12ra1ra 

12ra2ra 
2rararara 

2ra2rara 
2ra21ra 
2ta3tata 
2ta31ta 
2ta32ta 
2ta4tata 
2ta41ta 

2ta9tata 

If response other than (Y)es, abort by returning to the Primary Menu. 
If user confirms file is to be erased, then CLEAR all the variables.Note 
that the Defined flag will automatically be cleared at this point. Clear 
the display. Tell user that the job has been accomplished. Exit to the 
Primary Menu. 
DISK CATALOG ROUTINE. Clear the display. Turn on error trap. 
Use DOS directive to tell disk to display the catalog. 
Let user view catalog as long as desired. Give directions for terminating 
the operation. 
Exit on any key. Remove the error trap before leaving. Depart to the 
Primary Menu. 
EXIT ROUTINE. Clear the display. Tell user consequences of leaving 
the data base program. Verify that this is OK. 
Limit response to single character. If not (Y)es, then go back to the 
Primary Menu. 
Otherwise, clear the screen and exit the Data Base Program. 
READ DISK ROUTINE. If Defined flag is set, then see ifuser wants to 
discard file that is in memory. File must be clear before a new one is 
permitted to be read from the disk. 
If Defined flag not set, then OK to process command. Clear the screen. 
Display the function header. Provide a few blank lines after the header. 
Initialize all variables. Dimension arrays. Call upon subroutine to fetch 
the name of the file that is to be obtained from the disk. Set an error trap 
during I/0 operations. 
Open the specified disk file. 
Set the disk read mode. 
Input the elements of the Field Length/Field Status array. 
Input the elements of the Field Names array. 
Input the records of the file. 
Close the specified disk file. 
Set the file Defined flag. Remove the I/0 error trap. Go back to the 
Primary Menu. 
Subroutine to get file name for I/0 operations from the user. Query 
user. 
Limit response to maximum of 30 characters. Accept user's alpha­
numeric input. 
Form DOS control characters ( < C/R > + < CTRL/D >) for passing 
commands to the disk unit. Return to caller. 
WRITE DISK ROUTINE. See if a file is in memory. If not, clear the 
flag and go back to the Primary Menu. 
Make sure present file has something in it. If not, clear the flag and go 
back to the Primary Menu. 



PROGRAM COMMENTARY 97 

30200 
30210 
30220 
30230 
30300 
30310 
30320 
30400 
30410 
30900 

40010 
40020 
40030 
40040 
40050 
40060 
40080 
40090 
40500 

41010 
41020 
41030 
41040 
41050 
41060 
41070 
41080 
41090 

Clear the display. Show the function header, then a few blank lines. 
Fetch a name for the file from the user. Set up an error trap during 
I/0 operations. 
Open a file using the given name. 
Now delete the file in case an updating is taking place. 
Re-open the same file to re-establish the name. 
Set the file write mode. 
Write the field parameters information on the diskette. 
Write the field names. 
Write the records in the file. 
Close the file. 
Remove the I/0 error trap. Exit to the Primary Menu. 
Subroutine to trap disk I/0 errors. Only used if an error occurs during 
disk operations. Clear the screen. Tell user about the problem. 
Wait for a key to be pressed. Clear the error trap. Go back to the 
Primary Menu. 
PRIMARY MENU ROUTINE. Clear the screen. Space down the 
screen a ways so as to center the menu. 
Display Primary Menu option number 1. 
Display Primary Menu option number 2. 
Display Primary Menu option number 3. 
Display Primary Menu option number 4. 
Display Primary Menu option number 5. 
Display Primary Menu option number 6. 
Display blank lines in place of unused option positions. 
Display Primary Menu option number 9. 
Place the cursor at the bottom of the screen. Wait for a key to be pressed. 
Strip the code inputted when a key is pressed by subtracting 48 
(decimal) from the ASCII code. See if one of the digits ~ through 9 
was inputted. Loop to this same line if not a digit key. 
Go to the appropriate routine when a valid digit key is pressed. (Note 
that digits~. 7, and 8 cause the Primary Menu to be repeated as no 
functions have been assigned to those menu positions.) 
SECONDARY MENU ROUTINE. See if there is a file in memory. If 
not, clear the flag and go to the Primary Menu. 
Clear the screen. Space down to center the menu. 
Secondary Menu option number 1. 
Secondary Menu option number 2. 
Secondary Menu option number 3. 
Secondary Menu option number 4. 
Secondary Menu option number 5. 
Secondary Menu option number 6. 
Secondary Menu option number 7. 
Secondary Menu option number 8. 



98 DATA BASE MANAGEMENT FOR THE APPLE 

Line-by-Line Commentary (continued) 

41100 
41500 

41510 

41900 

41910 
50000 

50010 
50020 

50030 

50050 

50060 

50070 
50080 

50110 

51000 

51010 

Secondary Menu option number 9. 
Place the cursor at the bottom of the screen.Wait for a key to be pressed. 
Subtract 48 from the ASCII code of the key. If the result is not 1 through 
9 then stay on this line. 
Otherwise, go to the appropriate routine. Note that digit~ will cause the 
Secondary Menu to be repeated. 
Subroutine to see if a file has been defined. If the 'Defined' flag is not set, 
then clear the screen and notify the user. Set up a delay value and call 
the delay subroutine to give operator time to read the message. Set a 
flag to notify the calling routine. 
Return to the caller. 
Subroutine to accept alphanumeric inputs. Set a maximum string 
length default value at this entry point. 
Clear the input buffer. 
Wait for a key to be pressed. Check for a backarrow (used to delete 
characters). Jump ahead if character is not a backarrow. 
When have a backarrow and have more than one character in the input 
buffer, then chop off the last character in the buffer. Display the new 
cursor position and erase the rest of the input line from the screen. Go 
back to wait for another input. 
If the input buffer only has one character in it when a backarrow 
arrives, then null the buffer, show the cursor position, and erase the 
input display line. Go back to get another character. 
If fall through to this line, then the input buffer is already empty so 
ignore any attempt to backspace! 
If character is a comma, load the comma error message. Display the 
error message. Throw away the comma. Go back for another input. 
Jump ahead if the character is not the <RETURN> key. 
On detecting a < RETURN >, see if there is something in the input 
buffer. If so, exit to the caller with the alphanumeric string in the input 
buffer (W$). 
However, if the buff er is empty, then load an error message and call the 
subroutine to display it. Ignore the <RETURN> and go back for 
another character. 
See if the new character will cause the buffer length to exceed the 
maximum allowed value. If so, set up an error message. Display the 
message. Discard the new character. Go back to look for a< RETURN> 
or backarrow! 
If the character is valid and will not overflow the input buffer, 
append it to the buffer, echo it on the screen, go get the next one. 
Subroutine to accept numeric inputs. Set maximum default length and 
clear the Integer flag at this entry point. 
Initialize the input buffer. 



PROGRAM COMMENTARY 99 

51070 

51090 

51100 

59500 
59510 
59520 
59530 
59540 
59550 
59560 
59800 

59810 
59820 
59830 

59840 

59850 

59950 

59970 

Use the alphanumeric input routine to fetch a string. 
Keep out leading null characters to avoid system problems. If find one, 
then handle it as an error. 
First character may be a decimal point or the minus sign, provided 
there is more than 1 character in the buffer. 
First character may be any decimal digit. 
If reach here, set up an error message, display it to the user, erase the 
last input line from the display and go try again. 
Check for leading/trailing zeros or the presence of any invalid 
characters in the string. Do this by saving the original length of the 
alphanumeric input buffer.Next, convert the string to a numeric value, 
then convert it back to the string format. The final length should match 
the original length, else consider it an error condition. 
If the Integer flag is not set, can exit to the caller at this point with the 
numeric value and its equivalent in string format (in W and W$, 
respectively). 
If the Integer flag is set, then need to check that the value is indeed 
integer. If not, set up an error message, display the message, erase the 
input line from the display and go try again for a legitimate integer 
value. 
If value is integer, exit to caller. Integer numeric value is in variable W, 
its string representation in W$. 
Error message. (Concerning attempted use of a comma.) 
Error message. (When maximum length has been reached.) 
Error message. (For a null input.) 
Error message. (When numeric input is not valid.) 
Error message. (Noninteger value when integer required.) 
Error message. (Improper format.) 
Error message. (Numeric value outside allowed range.) 
Subroutine to display an error message. Save the current horizontal 
and vertical cursor position. Move the cursor to the first column 
position near bottom of the screen. 
Call subroutine to give an audible warning. 
Display the error message near the bottom of the screen. 
Set delay value. Call delay routine to provide time for the user to 
assimilate the error message. 
Restore the cursor to the start of the error message line. Erase the error 
message from the screen.Now restore the cursor to its original position 
and exit to the caller. 
Subroutine to erase a line from the screen. Position the cursor to the 
start of the line. Erase the line. Exit to caller. 
Subroutine to give an audible alert. Issue a beep using the monitor. 
Delay a little bit. Issue another beep. Exit to the caller. 
Subroutine to provide a programmed delay. Variable I holds the delay 
value when this subroutine is entered. Form a loop and count down to 
zero. Exit to the caller when done. 



100 DATA BASE MANAGEMENT FOR THE APPLE 

Line-by-Line Commentary (continued) 

5998~ Subroutine to clear the screen and space down a few lines. 
5999~ Subroutine to space down a few lines. 

Variables Usage 

The following list shows the primary usages assigned to each variable 
name used in the data base management program. 
A$ -Temporary working buffer. 
A$(*) -Field names. 
A(*) - Field and file control array (usage explained in Chap. 5). 
AA$ -Used as a flag to indicate if a file has been defined. 
B -Temporary working register (number of characters allowed in a field, 

starting position of a field). 
8$(*) -Records array. 
B(*) -Used for flagging fields (to suppress output, inhibit selection during 

Change Operations). 
C -Temporary counter; printer-selected flag. 
CH -Horizontal cursor position register. 
CV -Vertical cursor position register. 
D -Flag (suppress display of record numbers) and temporary register. 
E -Character position counter. 
E$ -Temporary register used for error messages. 
F -Temporary working register. 
G -Error-condition flag. Used to notify the calling routine if a subroutine 

is aborted. 
I -Temporary loop counter. 
1$ -Input character buffer. 
J -Temporary loop counter. 
K -Temporary loop counter. 
L -Temporary loop counter. 
LC -Maximum number of characters to be allowed during input. 
LO -If nonzero, only integer values will be considered as valid by the 

numeric input routine. 
LI -Temporary register. 
T$ -Temporary record working buffer. 
W -Numeric input register. 
W$ -String input register. 
X -Temporary register; alternate input register. 
X$ -Temporary string register; alternate string input register. 
Y -Temporary register. 
Z -Temporary register. 



PROGRAM COMMENTARY 

Table of Variables 

A$ 
22111111 28Ql0 315iZJ 414111 

A$<*> 
113111 19111121 283tZS 6630 6630 7341!1 791110 7950 94111111 212J31t!i 3iZJ31f; 

A<*> 
125QJ 1281!1 13f!J0 1310 1420 142(~ 14311l 1441Zl 19111111 211Zl0 22JZJ0 2221!J 222f0 
2231D 224QI 2251ZJ 2251ZJ 2812J1ZJ 281111 2851ZJ 285~~· 287¥.1 287QJ 291111!1 2911Jel 3130 
314111 3170 318111 321Zl!ZJ 3212HZJ 413QI 418111 421ZHZI 421111 422J!J 521ZHZJ 520QI 5210 
521Ql 521QJ 5720 57MI 580QJ 590QJ 661121 663111 664111 664¥.1 6721ZI 6731ZI 674QI 
682111 731111 732i2J 741111 742121 745121 79m0 79111121 795121 84111111 847QI 848!11 8480 
8500 850121 9230 9300 9320 2Q13QIQI 2QJ320 303f2jQJ 30320 

AA$ 
1Y.l!!l0 1451Zl 201111Zl0 21Zl4l!Zl 41901!1 

B 
124111 1310 1310 1310 1430 1430 143Y.1 1430 143¥.1 144!11 144121 210QI 2240 
2240 3150 31811l 3180 4140 4181ZI 418!11 421111 421QI 731111 7320 7321ZI 7340 
741121 742111 745111 79111111 79130 7920 8400 84Q10 8470 848111 8480 8501!1 8500 
9230 9300 930QI 9320 9400 

8$(*) 
1912Sl11 21Ql0 2220 2220 3140 3140 3150 317111 317Y.1 41711l 4170 41811l 418111 
418121 4190 419121 4190 52012l 52J!HZJ 5210 6730 7410 848111 8480 8500 8500 
85111l 852111 8520 8530 9320 21!1320 30320 

B<*> 
19111121 404111 415111 6610 6720 684QI 6900 

c 
1430 1430 6210 6570 659111 6750 7330 

CH 
59800 59840 

CV 
59800 59840 

0 
6540 6550 671110 84411l 8540 8560 931110 9320 9320 9420 

E 
6720 6730 6740 6740 

E$ 
123!11 1240 8120 9230 5950!11 59510 59520 59530 59540 59550 59560 
59820 

F 
521110 520(!1 5210 732111 7320 7320 7410 84(!10 840!11 84111111 8480 848111 8500 
8500 930QI 93Q10 9300 9320 

8 
2Q101ZI 200111 2900 29l!lj!j 31!J(!Jf!J 31111110 31211111 311110 32t!Ji!J 3200 4!11111111 40111111 4!1140 
4050 4050 50QJ0 51ZHZJQJ 5110 5110 571110 5710 5750 581!JJ!J 58!11!11 6QIQIQI 611100 
6110 611111 71111!10 7111111(0 711111 711111 7231!1 7230 796111 8111111m 8111111111 811111 811111 
8220 822!11 9ro!i111I 91ZIQ10 9110 9110 922JZJ 9220 30000 301110111 30010 3121010 
4111100 4101110 41900 

Hl1111 145111 287(0 2870 290111 3!1110 3140 3140 314111 314111 41114111 41114111 4l~51ZI 
5200 5200 52fD0 52QIQI 5210 5210 58QJ0 59111¥.1 6230 625l!J 671111 673111 677111 
69111!11 69121121 691111Zl 7320 7320 7320 7411lJ11 741111 75QHZI 793121 795i!J 84111111 84111111 
8400 8450 8460 8480 8500 8510 8520 8550 9300 9300 9300 9310 9320 

101 



102 DATA BASE MANAGEMENT FOR THE APPLE 

933~!J 1J!1!!14CZJ 2!03fZllZI 2(!13(!1!ZI 21!13QllZI 2121310 2t!l31f!J 2f!l311!J 2C!J320 20320 2Ql320 
3~'.13 !ii QI 3 Ql3Qli21 3V.13IZIQI 311131121 3111310 3Ql31QI 3Ql321l! 3Ql32QI 311132QI 405111111 40500 
40500 40510 41500 41500 41500 41510 41900 59830 59950 59950 59950 
5995111 5997111 5997QI 5997QI 59970 59970 

1$ 
41!15J!llZI 41!15QHZI 415J!IJ!I 4 l 5J!ll!J 5f!ll!J212J 51!1J!J20 5'211030 51ZH!l4f!.J 51ZH?60 5f!Ji!J7f!S 50110 
511111(!! 

J 
742QI 7430 74511! 75111111 841Q! 842111 842111 8430 8460 8571~ 

~-· 

672111 6720 67311! 674111 674111 790111 7900 791110 790111 791111 7950 7950 7950 
94:3111 845QI 

L 
661111 661111 662111 6630 663QI 663111 663111 664111 664QI 6660 8460 8480 8500 
852c.'.I 8530 

LC 
112QI 122Y.I 1271!1 13512' 22710 285121 3120 3221!1 412121 4240 514f!J 5790 6510 
654111 6570 682111 7220 7310 8210 921IZI 10020 12010 2Ql910 50000 50100 
511111110 

LD 
122111 285111 312111 412111 5790 6820 511110111 51Q!80 51100 

LI 
511117111 5111170 

T$ 
74111! 7430 851Q! 8530 304111111 3041110 

w 
123111 123(!1 124111 1250 3120 3130 313111 314111 315!11 3150 3170 3170 3230 
323111 412111 571121 572QI 572111 57411! 575QI 5760 5760 5770 6820 6820 6830 
684111 5111110 51070 51070 51090 51090 

W$ 
1130 12811! 12911! 136111 137111 222(!1 228111 28712! 2870 287111 2870 31 70 3220 
4180 42411! 514111 651111 654111 65711! 6580 677QI 67711! 7350 7350 7900 7930 
944121 1J!h!l3QI 11Y.13QI 12Ql1f!I 21!12!.Zlf!S 2J!l2112J 21!14JZJJ!J 3121200 3J!J210 30220 30230 
3Q!4130 311191Q! 511111!1QI 5111111311! 5011130 5011130 50111311! 5111040 5111040 50080 50100 
511111111 511111111 51030 5111140 5111140 51040 51050 5111150 51070 5111170 51070 
5111170 

x 
111111 113111 12111! 1251!1 126111 128111 13i!H!I 1310 1320 1360 1360 1420 
2Hl0 223!!1 2240 224Ql 224£!1 28111111 281QI 28312• 283vJ 285J!l 2850 2870 
315JZ• 317111 3180 318111 31811! 4140 415121 4180 42f!H!J 4210 4210 4210 

X$ 
735111 742!0 743111 7430 745111 2Ql200 2f!l211il 20400 20920 30200 30210 
3022!0 311123QI 3040Q! 

y 

1430 
2870 

5120 521110 574121 576111 6230 7340 74111111 8120 8300 8400 8400 8410 8450 
9310 9410 

z 
4120 41211! 4130 41311! 4140 417111 417111 41811! 4180 4180 4190 4190 4190 
422QI 425f!5 4251~ 512Q• 520Q• 52Qlf2J 5200 5770 6230 6770 7340 74Ql0 8120 
83111111 84111111 8411llil 841111 8430 931121 9410 

END OF VAR. LIST 



PROGRAM COMMENTARY 

Table of Line Number 
Cross-References 

101Zl0 
4051QI 

1030 
10QllZJ 

1100 
136111 

1220 
1230 1240 

1270 
1290 

1310 
1280 

1350 
137QI 

1400 
131f!J 132f!J 

1900 
11113111 20110 

211Jl1J0 
228111 41511Zl 

2200 
2240 

2250 
2230 

281Zl0 
221QI 3160 4160 

2830 
28HI 

2870 
2851Zl 

2900 
201Zl0 301Zl11J 321Zl!Zl 

3000 
4151QI 

3120 
313111 

3140 
323111 

3160 
318111 

3200 
3170 

103 



104 

39f!J1ZS 
311!@ 3160 

401110 
4151.0 

411il0 
4Ql51!1 

4120 
413111 

4140 
4251!1 

41511! 
421111 

42Qli1J 
415111 

4220 
420QI 

49Ql11l 
41111.QI 41121121 41611l 

51ZS1!10 
4151111 

5HJ0 
514111 

5701!1 
511121 6110 7110 811121 9110 

5710 
573QI 

57512' 
576QI 

579111 
5'71!!1 57510 

58QJi1J 

DATA BASE MANAGEMENT FOR THE APPLE 

3011!! 4111111111 511li11QI 612111@ "711l0111 8111111111 9111111111 31111111111 

59~1QI 

311210 4100 5100 5210 6100 711@ 8100 9100 

6Ql0111 
4151111 

6500 
62100 721Zlf0 

6530 
651111 

6560 
654QI 

6570 
6581Zl 



PROGRAM COMMENTARY 105 

6600 
622QJ 7350 

6660 
66HI 6640 

6700 
624QI 7440 

6 7 20 
67Ql0 

6740 
6720 

6800 
4030 6520 

6820 
682QI 6840 

6900 
4010 651110 

6910 
651Z10 

6920 
6520 

6930 
653f!J 

6940 
656111 

7000 
41510 

7210 
723j!J 

7500 
7430 

790111 
723fZJ 8220 9220 

81110111 
41510 

8200 
822'2J 

8420 
8570 

8440 
8!:'i60 

8500 
8470 

8510 
8490 

8550 
848QI 8500 



106 

9000 
41510 

9200 
922121 

10000 
20e10e1 40510 

11000 
40510 

12000 
4e1510 

20000 
4Ql510 

20900 
2til1 HI 3111110 

30900 
11000 20110 30110 

40000 

DATA BASE MANAGEMENT FOR THE APPLE 

1 1i!l20 10030 1011140 11030 12Ql1(.~ 20410 3111C!l0JZ! 311111110 3111410 30910 4Hl00 
41510 

40500 
4t115e10 405110 40510 40510 

41000 
145e1 2f!J00 2290 
5tZll!J0 5! 10 5210 
9till110 911111 9230 

41500 
4150(!1 41510 

41900 
3QIQll11111 41111(!10 

50010 

3111111111 3QJ10 
611100 6110 
944QI 4051111 

312'2J 32f!lt!J 322f!J 4(!1111111 41116(!1 412111 4221'ZJ 4240 
6260 700(!1 7110 7510 801Zltil 8110 8120 8580 

112QJ 127111 135(!1 227111 286111 322111 4240 5140 6510 654111 657QI 722111 7310 
8210 9210 10(!12(!1 12(!110 2Ql91QI 5102(!1 

51!1(!120 
50Ql30 5Y.11115121 511111160 511111190 51111121111 51111 HI 

50060 
5l!Ji!J20 

50100 
501117QJ 

51el10 
1220 2850 312111 4121!l 579QJ 682(!1 511116111 51Ql9(!1 

51(!160 
51030 51(!170 

51070 
5lf!l40 

59500 
511111160 



PROGRAM COMMENTARY 

59510 
5l!J1f!l0 

59520 
5J!Jli!90 

59530 
511116!!! 

59540 
51f!l90 

59550 
1291il 1371iJ 6580 

5956(!1 
3131! 41311! 573111 57611' 682111 

59801i! 
1231il 1241il 129111 1371il 3131i! 413111 573111 576QI 6581il 682111 812fil 923111 51ilfil6fil 
5111119111 511110111 511116!!1 5109111 

5985(!1 
12:3111 12411' 129111 137111 313111 4130 573111 576111 65811' 682111 511il6Ji! 51111911J 

5995121 
5981111 

5997111 
1111111' 145111 29111111 31il 11!1 581111i! 59111111 793111 795111 11111114111 419111111 5983111 

59980 
1f!J1f!I 11J!H!I 133f!J 14f!JJ!J 221ZH!I 29J!fl!J 39J!H!I 491210 51J!ll!I 512121 58121(!1 61f!H!J 62119 
6780 691Ji! 6920 693Ji! 6940 71Ji!0 721Ji! 7330 7930 81Ji!Ji! 8200 83J!Jli! 91Ji!Ji! 
92Ji!Ji! 941il0 1Ji!00Ji! 1Ji!04Ji! 11000 12Ji!Ji!0 1202Ji! 20111~ 301Ji!Ji! 3091110 41~0111 

4HJ10 41911111 

5999111 
1010 1200 1250 1410 2200 2260 2840 3010 3100 3160 3210 4020 4100 
416111 Lf23111 513111 57QllZJ 57411 59111(!1 621Ql 626121 626111 676111 7311111' 731111 7330 
7351il 751111 751111 7931i! 94111' 943111 111112111 1211111111' 21111111111 31111111111 3091111il 41JJ1Jf!Jlil 
4J!Jli!1110 411111111 4101111 

END OF LN# LI ST 

107 



DATA BASE MANAGEMENT FOR THE APPLE 

BELLS AND WHISTLES 

Breathes there a soul that can resist adding to or making alterations to a 
program? Hardly. Thus, the latter part of this book has been designed to 
actually help, rather than hinder, those venturesome comrades who feel 
the need to give in to their creative programming urges. The previous 
few chapters have provided basic technical information about the 
program. This final section gives ideas and encouragement to those who 
want to join the ranks of membership in the fraternity of "custom 
programmers." 

The First Rule 

Never start monkeying around with a program until you have saved a few 
archive copies of the untouched original! Yes, you are authorized to keep 
multiple copies of the material provided in this publication for your own 
personal use. Since the publisher and I are being so open in providing 
detailed information about how this program works, we hope you will 
help us by telling your friends to buy their own copies. Doing so can 
encourage us to produce more material of this nature in the future. 

It is also a good idea to periodically back up whatever version of the 
program you might be working on. After all, you never can tell when 
there is going to be a power failure or some kind of computer glitch. 
Better safe than sorry. Furthermore, getting in the habit of doing this 
can save a lot of grief if the development or modification efforts don't go 
exactly according to plan. After all, once you start modifying a program, 
it is possible to mess the thing up. Having a chronological series of copies 
of the program as work proceeds allows you to go back a few steps, if you 
suddenly discover your alterations no longer work as planned! 

Basic Customizing 

Let's start with fairly simple and straightforward changes. One of the 
first possibilities in this category might be making room for more data. 
108 



BELLS AND WHISTLES 109 

There may come a time when you are working on an application that you 
realize you need "just a little more room" for your data file. What can you 
do to remedy the situation? (This treatise assumes that you need more 
memory in which to store the file, not that you need to store more than 
999 records. That would be a different matter!) 

You could remove portions of the data base program that you may 
not need as much as you require that extra space! For example, you 
might decide you could live without having the INSERT and CHANGE 
options in a particular application. Removing the portions of the 
program that provide those capabilities would leave more room in the 
memory of your system for your data file. You might consider, say, also 
getting along without the FIND and TALLY options. That would open 
up still more room. 

Because of the modular way in which this program was con­
structed, it is quite easy to remove sections of the program. However, you 
must use a little consideration and "look before you leap." You should 
always use the table of line number cross references (provided in the 
previous chapter) before proceeding to take out program lines. 

For instance, suppose you want to eliminate the INSERT option. 
You know (from reading previous chapters, I hope!) that the main 
statement lines for this operation begin at program line 3000. In-line 
operations are in the lower-numbered section of the 3000 block. 
Subroutines primarily associated with this operation would be in the 
higher-numbered section of the block. (For instance, at line 3900.) 

Use the Programmer Aids 

A check of the table of line number cross references beginning at line 
3000 immediately brings up an important consideration. That line is 
referenced by line 41510. That turns out to be the Secondary Menu 
routine. You now know that before you kick line 3000 out of your new 
version of the program, you better take care of what happens when you 
try to select the INSERT option from the Secondary Menu! One quick 
and dirty solution to this problem would be to simply alter line 3000 to 
read: GOTO 41000. That is, return control right back to the menu. 

Of course, that method leaves something to be desired. For one 
thing, after you remove the ability to perform an insert, the Secondary 
Menu would continue offering a nonexistent option. A much more 
professional approach would be to modify the Secondary Menu so that it 
no longer served up the INSERT option. A little study of the program 
listing and commentary should give you insight into making the 
appropriate modifications there, if desired. 

Let's return to the question of what can be removed from the section 
of the program (starting at line 3000) that originally provided the 
INSERT capability: Further examination of the program and line 
number cross reference table reveals that, with the exception of line 



110 DATA BASE MANAGEMENT FOR THE APPLE 

3000. which I have already discussed, all of the lines in the 3000 block 
(3000-3900) could be removed. This is because none of the other lines are 
referenced by routines outside of this block! 

The same kind of situation exists for the CHANGE option. The first 
line of the module (4000) is referenced by the Secondary Menu. The rest 
of the lines in the 4000 block are effectively "self-contained." Thus, they 
could be removed without affecting the rest of the program. 

But be careful when it comes to knocking out the FIND option! A 
check of the line number cross reference table shows that the FIND 
operation contains a subroutine, starting at line 7900. That subroutine is 
called upon by several "outside" routines. Removing that subroutine 
would cause those "outside" functions to "crash." So, you might wisely 
restrict your line deletions in the 7000 block to the range 7000-7510. 
(Assuming, of course, that you make provisions for the Secondary Menu 
reference to line 7000.) 

It turns out that you can safely bump off all of the TALLY option. 
That is, provided you take care of the initial entry point (line 9000) 
referred to by the Secondary Menu. By now I am sure you see the point. 
Don't just blindly wade into the program and lop off lines. Check to make 
sure anything removed is not needed by another section of the program 
that you still want to be able to use. Refer to the table of line number cross 
references to avoid problems. 

Of course, those are not the only sections of the program eligible for 
elimination. They are mentioned as possibly being the most likely.Nor is 
the need for additional memory in which to store a larger data base the 
only reason for removing some options. I'll comment on that shortly. 

Decide First! 

At this point, it is necessary to mention that you must make the decision 
to remove portions of the program (thereby freeing up additional 
memory for data) before you establish the data base. 

Why? Because, at the conclusion of defining the format for a data 
base, the program (see lines 1430 and 1440) determines how much 
memory is available for data storage. It then sets array element A(82) to 
the maximum number of records that can be contained in this space. If 
you use the original program to format a data base, it will limit the 
number of records (assuming it is less than the maximum 999 permitted) 
based on available memory. If you save that data base on a diskette, it will 
save that maximum allowable record number in array element A(82). 
Attempting to use the data base later, with a data base program that has 
been reduced in size, won't do a bit of good! A(82) will act to limit the data 
base to its original maximum size. 

So, if you know that the size of a data base is going to be a problem, 
then do your homework first! Create a reduced-size data base manage-



BELLS AND WHISTLES 111 

ment program by removing unwanted options before actually defining a 
file. Got it? 

(There are ways, of course, for advanced programmers to get 
around the problem of having an earlier defined program limited in size 
by the value in element A(82). I assume those with such qualifications 
can proceed well enough on their own.) 

Restricting Access 

Earlier I mentioned that lack of memory might not be the only reason for 
wanting to remove functions from the program. Another reason could be 
because you do not want some operators to have access to those options. 
Suppose, for instance, that you run a small business. Perhaps you decide 
to computerize a customer list. Later you find out that it would be 
beneficial to allow other employees of your organization to use the list. 
However, you do not want them to have the ability to add to or alter the 
list. Sound like a plausible situation? 

So, 0 K, you provide a special stripped-down version of the data base 
program that is to be used by other people. In it, you remove the 
capability to APPEND, DELETE, INSERT, or CHANGE any data. 
You might want to limit other operations. I am sure you get the picture. 
Presto. You have a program you can give to other people. It will allow 
them to list the information, perhaps sort it on different keys, obtain 
tallies, and so forth. But, unless they are programmers, you have pretty 
much taken away the capability of altering your data base. 

Of course, any time you want to, you can use the original version of 
the program to update or otherwise modify your data file(s). 

Going the Other Way 

You can go in the other direction, too. That is, instead of taking away 
capabilities, you can add your own options. When you do this, though, you 
will reduce the amount of memory available for storage of a data base. 
(Unless you decide to swap unwanted routines for those of your own. This 
is often a practical alternative.) 

The kinds of capabilities you might want to add are virtually 
limited only by the strength of your imagination and your own 
programming prowess. 

However, the modular structure of this program, along with the 
fixed-field format chosen for its design, makes the implementation of 
many kinds of extra options quite straightforward. 

There are plenty of convenient gaps in the line numbers assigned to 
the original program in which to place new routines (such as in the range 
13~~~-19999). 



112 DATA BASE MANAGEMENT FOR THE APPLE 

The structure of the menu routines can readily be duplicated to 
provide whole screens full of new options. You can activate a new digit 
(such as~) in the original menus to provide a means of getting to a new 
sub-menu. 

What kind of new capabilities might you want to provide? You will 
certainly know better than I, but here are some possibilities in the event 
you are just looking for excuses to dive in and enhance the package: 

How about adding column-to-column mathematical operations? 
Perhaps an option named ADD would permit a user to specify the field 
names or numbers of two fields (columns) whose contents were to be 
added together. Maybe the result could be left in one of the original 
fields. Or, possibly you would permit the specification of a third field in 
which to store the result. Oh yes, you might as well let the user specify the 
range of record numbers over which this operation was to occur. (You 
want to provide plenty of flexibility, right?) 

Once you had an option such as ADD functioning smoothly, you 
could use the basic structure you had developed to, perhaps, allow 
further operations such as SUBTRACT, MULTIPLY, and DIVIDE. 

No need to stop there. You could provide other kinds of special 
mathematical operations. How about scanning all of the records in a 
particular field to find the maximum and minimum values, calculate an 
average, determine the mean or figure the standard deviation? The list 
could go on .... 

You say you are not interested in creating mathematical capa­
bilities? How about new ways to manipulate alphanumeric information? 
The ability to, for example, find all occurrences of a particular word or 
phrase in a field (for any or all records) and replace it with different data. 

A nice capability to add to the program, if you plan to maintain 
extensive mailing lists, is this: The ability to search through a file, 
looking at the contents of a specified field, and then remove (delete) those 
records that contain (or do not contain) a specific key. That is, to 
essentially automate the FIND and DELETE operations that are in the 
program! 

How about extending the program's 1/0 capabilities? Could you use 
a "file merge" feature? This, for example, might allow you to combine 
several small files. What about providing the ability to split a large file 
into two sections? 

All of these types of operations could be added by skillful and 
resourceful programmers. While the actual description of such altera­
tions are beyond the scope of this text, those ideas may provide food for 
thought .... 

Modifying Existing Routines 

It is not necessary to create whole new capabilities, however, in order to 
enhance the operation of the basic program. Many frills and new 



BELLS AND WHISTLES 113 

features can be added by modifying, often just slightly, the various 
routines in the package. 

Suppose, for instance, that you are not happy with the fact that the 
original package does not allow the use of a comma. This design decision 
was made, primarily, to avoid potential I/0 problems. But, you say you 
must have commas. OK, let's talk about how you might go about altering 
the program to allow their use. (At some risk, as will be pointed out 
shortly.) 

Commas are kept out of a data base file by the operation of the 
alphanumeric input routine that begins at line 50000. You could allow 
commas to be entered by deleting line 50060. That line performs the 
comma screening procedure. But wait! A check of the line number cross 
reference table reveals that line 50060 is referenced by line 50020. 
Examination of line 50020 indicates that removing line 50060 means 
you would have to change the last part of line 50020. It would need to 
become "THEN 50070" instead of the original "THEN 50060." 

With line 50060 taken out of the program, you could also eliminate 
line 59500. That is the error message subroutine referred to by line 
50060. (You may, however, want to keep it handy, for a reason that will 
be pointed out shortly!) 

Once those changes had been made, you would find that you could 
indeed enter commas when using the data base management program. 
In fact, if you never had to save data files on diskettes, you might never 
detect any difference in the program's operation. (Other than that you 
now could input commas!) 

Alas, however, all is not necessarily well. You would quickly 
discover this fact if you attempted to write records containing commas 
(by saving the data file) to a diskette and then read the file back into 
memory. Some of your data would be missing. Chances are that the read 
operation itself would, as the saying goes, "bomb." You see, commas that 
are not enclosed within quotes cause the DOS to interpret inputs 
differently than when they are inside quoted strings. 

But all is not lost. It is possible to further modify the program so 
that it can write and recover data files to and from a diskette even when 
there are commas present in the fields making up the data records. All 
that is needed is to alter line 30320 to read: 

FOR I=0 TO ACB1>:T$=CHR$C34>+B$CI>+CHR$C34>:PRINT T$:NEXT I 

What this does is throw quotation marks around each record as it is 
written to the diskette. No changes have to be made to the diskette read 
routine. This is because the DOS will automatically strip off those 
quotation marks and ignore any commas buried within the quoted 
strings! 



114 DATA BASE MANAGEMENT FOR THE APPLE 

Think you have the situation licked? Well, there are still a few pits 
left to fall into. What happens, now that commas are allowed during any 
user input, if someone puts a few commas in the strings used to name 
fields (i.e., in elements of the Field Name Array, A$)? Trouble will 
happen, friends, if you try to recover that file from a diskette. 

Are there ways around this situation? Sure: 

1. Tell users never to use a comma in the name of a field. (This 
approach is not recommended. Users never believe "never.") 
2. Further modify the disk write routine to take care of this 
potential situation by changing line 30310 to: 

FOR 1=0 TO 39:A$=CHR$(34>+A$<l>+CHR$(34>:PRINT AS:NEXT I 

(You did check the table of variables to make sure you could use the 
string variable A$ in this situation, didn't you?) 
3. Create a separate input routine for use when inputting field 
names that did not allow the inputting of commas. 

0 K, you are the boss now; it is your program. Which do you think is 
the best method? Do you think we have thought of all of the possible 
ramifications of allowing the use of commas within the program? Well, 
as I said, you are now creating your own customized version, so you make 
the choices you feel are best for your own particular circumstances. 

Perhaps, though, after this little discussion, you will appreciate 
why I did not allow the use of commas in the published version. It was 
because that was the safest alternative when considering that totally 
novice users would likely be attempting to use the package. You, the 
venturesome reader, can now make the choice as to whether you want to 
trade off program integrity or "safeness" for the benefits you may derive 
from being able to use commas. Be careful not to chortle to yourself too 
loudly as you enjoy whatever new comma-commanding benefits you 
decide to install. There may still be pitfalls lurking to catch the unwary! 

From Numbers to Names 

You may have noted, when using the data base program, that some 
options direct the user to identify fields by name. Other options call for 
identification of the field by number. 

Why the two methods? Which method is better? Well, there are 
valid reasons for using both (as was done). B:.it, there can be little 
argument that which method to use is largely a matter of personal 
preference. 

I found, when designing the program, that for me it seemed most 
comfortable to be able to specify a field by name when I wanted to search 
through records. This was also the case when designating which field to 
sort or tally on. 



BELLS AND WHISTLES 115 

On the other hand, I found there were places where having to type 
in the names of a lot of fields were cumbersome. One such place occurs 
when you are specifying which fields to suppress when using the LIST 
or FIND options. There it seemed more convenient to just enter 
the numbers of all the fields that I did not want to have outputted. 
Experience provided further impetus for staying with this method of 
selection. I have found that when I have been working long enough with a 
particular application to know which fields are not needed during a 
listing operation, I know what positions they occupy within a record. 
Field position corresponds to field number. Furthermore, by the time I 
get around to being concerned with doing selective listings with various 
fields being suppressed, I have plenty of help at hand. That help is in the 
form of previously made listings whereby all the fields are shown. The 
header of such listings contains the field numbers of all the fields along 
with their names. Thus, it is an easy matter to read down such a header 
and merely enter the numbers of the fields that are to be suppressed. 

But suppose you are not impressed by that line of reasoning. You 
want to be able to enter the names of the fields that are to be suppressed 
instead of their numbers. Well, as I have said before, now it is your 
program and you are free to change it to suit your tastes. It really is not 
too difficult to implement the kind of variation being discussed here. 
Changing the program by adding the lines shown here would be one way 
to accomplish the objective: 

6200 GOSUB 6900 

6202 GOSUB 59980:6DSUB 6910 

6204 LC=l:GOSUB 50010:IF WS<>"V" THEN 6210 

6206 GOSUB 59980:PRINT "SUPPRESS FIELD NAl1ED?":PRINT 

6208 LC=10:60SUB 50010:60SUB 7900:IF B=>0 THEN B<B>=1 

6209 GOTO 6202 

A line-by-line commentary of the new lines will help clarify the 
matter: 

6200 Call subroutine that initializes Field Status array to zero. 
6202 Clear the display. Call message subroutine that asks if user wants to 

suppress a field. 
6204 Limit response to one character. Fetch response from user. If response is 

not (Y)es, then skip the rest of this procedure. 
6206 Clear the display. Query user for name of a field to be suppressed. 
6208 Limit field name response to maximum of 10 characters. Get the user's 

input. Call subroutine to check the field by that name exists. If B is not 



116 DATA BASE MANAGEMENT FOR THE APPLE 

negative upon return, then use value of Bas a pointer to the Field Status 
array element that is to be set, indicating that field is to be suppressed. 

62"9 Loop back to see if any more fields are to be suppressed. 

You can see that this method calls upon various routines that are 
already present in the program to accomplish the objective. (You might, 
referring to line 6202, want to substitute a slightly different message 
than that provided by calling the message subroutine at line 6910.) The 
point being made here is that such essentially cosmetic changes can 
readily be made at your discretion. All it takes is a little studying of the 
listing and supporting documentation to locate the operations you want 
to duplicate. Then, you judiciously blend the portions you want into the 
appropriate place(s) in the overall program. 

You could, for instance, perform a similar alteration to the FIND 
option, so that you could again use the names of fields that are to be 
suppressed. A slightly different variation of this scheme could also be 
applied to the CHANGE option. There, you could apply the new 
procedure to enable a user to specify, by field name, those fields that 
were to be subject to change. 

From Names to Numbers 

Of course, you might be interested in going the other way. That is, you 
might want to alter, say, the FIND routine so that you could specify the 
search field by number, instead of name. Here is one way that could be 
arranged: 

7211~ 6DSUB 59980:PRINT "SEARCH FIELD NUMBER?":PRINT 

7220 LC=2:LD=1Z6DSUB 51010:B=W-1 

7230 IF B<0 DR B=>A<B0> THEN 6DSUB 59560:6DSUB 59800:6DSUB 59850: 

GOTO 7210 

The commentary for these replacement lines would be as follows: 

721" Clear the display. Query user for field number that is to be searched. 
722" Limit number of digits to just two. Number inputted must be an integer. 

Fetch the user's response. Subtract 1 from user's input as array elements 
start at zero, not one. 

723" Check that field number specified is valid for the current data file. If not, 
display error message, then go back to try again. Otherwise, continue 
program. Variable B holds pointer to field selected. 

The same instructions could be applied in the SORT option (at lines 
8200. 8210, and 8220) and the TALLY operation (lines 9200. 9210, and 
9220). You would, of course, want to alter the user query (in line 7210 of 



BELLS AND WHISTLES 117 

the illustrative routine) to correspond with the type of operation being 
performed. 

Changing CHANGE 

The CHANGE option was designed with the assumption that a person 
making changes to a data base would be working from a list (produced 
by the program) that was being updated. This might be the case, for 
instance, when someone was updating a mailing list. Typically, an 
archival list would be marked up with the necessary changes. This would 
be in front of the computer operator entering the data for reference. 

However, when reviewing the program, an associate pointed out 
that there could be applications where it might be more convenient not to 
have to refer to a previously generated printed list. One such case might 
be where a field contained information regarding, say, the status of a 
project. Periodically that status might need to be changed to reflect 
progress (or the lack of such). 

It would be nice, in such a situation, if the CHANGE routine would 
display the current contents of each field that was subject to alteration. 
This can be arranged with relatively little effort. As a matter of fact, just 
adding a single line and altering one other can provide such capability: 

2845 IF 6=1 THEN PRINT MIDS<BS<Z-1>,B,A<X>>:FOR 1-1 TO A<X>:PRINT 

"-";:NEXT I:PRINT 

4160 60SUB 4900:60SUB 59990:6=1:60SUB 2800:6=0 

Line 2845 is entirely new. Line 416~ is a modification of the original. 
These lines could be commented as follows: 

2845 If flag (G) is set, display the current contents of the field being accessed 
by the CHANGE option. Draw a line of dashes underneath. Length of the 
dashed line to be equal to the number of characters permitted in the 
field. 

4160 Call subroutine to display CHANGE function header. Then provide a 
few blank lines. Set a Display flag to enable data input subroutine to 
display current field contents. Call the subroutine that accepts data 
inputs. Clear the Display flag upon return. 

With these modifications, you would be able to see the current 
contents of a field whenever you made changes. You can then elect to 
input different data or copy the current contents of the field. 

You might be inclined to proceed further. It might be quite nice to 
be able to elect to keep the present data in a field after it had been 
displayed, rather than changing it! But, providing this feature is not a 
trivial task. If you want to approach the project, I'll give you a few tips. 



118 DATA BASE MANAGEMENT FOR THE APPLE 

First, you will need to provide a new type of character input 
routine. One that will accept a "null" input (that is, just the< ENTER> 
key). The current version blocks out inputs that do not contain at least 
some other valid character. 

Second, you will need to differentiate between a null input and a 
"data" input. The former could be used to indicate that the current 
contents of the field were to be left unchanged. 

Third, watch out for the fact that you can be dealing with both 
"types" of fields: alphanumeric and numeric! How are you going to 
handle numeric inputs? 

Can you find ways to modify the original input routines (starting at 
lines 5~~ 1~ and 5W 1~) so that they could provide the kind of operation 
necessary to provide this new capability? 

Remember to use all the programming tools provided: the program 
listing, commentary, variables, and line number cross referencing 
documents. They can be invaluable when facing such a challenge. 

If you are looking for still more to do with the CHANGE routine, 
how about these possibilities: (1) modify the setup procedure so that the 
user can specify those fields that will not be subject to change within each 
record (be careful, this can be a little trickier than you might think at 
first glance); or (2) if you implement the capability for the user to review 
the current contents and opt to leave it unchanged, then you could simply 
allow all fields in a record to be processed. Providing for this should be a 
"piece of cake," if you have the savvy to accomplish the former part! 

Fixing Up FIND 

The possibilities for enhancing the FIND option are many. You might 
want to go to work making your own really high-powered DBM by 
adding to this operation. What are some things you might do to provide 
more search power? How about these: 

You could essentially duplicate and "nest" the basic search 
operation so that it examined two or more fields within each record. 
Furthermore, you might consider giving the user options to perform 
Boolean logic combinations among those fields. That is, to specify search 
strings within each field. Then to further specify that a record is to be 
outputted only under selected logic criteria, such as if a match is found in 
field A and B or if it is found in field A or B, etc. 

You might also consider permitting multiple search strings to be 
specified within a single field. Again, this could be further amplified 
to allow Boolean logic selections among those intrafield strings! 

How about adding more search string versatility? You might want 
to study the feasibility of providing for "wild-card" character positions 
within a search string. Or how about adding an option to look for 
characters according to position within a field. Thus, while the original 
search algorithm will, for instance, consider it a match if a given string is 



BELLS AND WHISTLES 119 

found anywhere within a field, you might want to be able to consider it a 
match only if it occurs in a specified position. 

A word of caution, however: Search algorithms can eat up a lot of 
memory. While large and powerful data base management programs 
you may have heard about often establish a reputation for their search 
capability, they do so at the expense of lots of memory. Normally those 
types of programs use disk overlays to provide a great many options. This 
method reduces the amount of memory utilized by the program at any 
given time. This is because only the section of the program currently in 
use (and a few supporting utility subroutines) are in memory at any one 
time. 

This relatively small, memory-resident data base management 
program is not designed to facilitate program "chaining" and overlays. 
So, don't get carried away with providing all kinds of search capabilities, 
only to realize you don't have room left for a substantial data base on 
which to exercise all that power! (But you can, of course, set up a whole 
library of modestly sized versions of this program. Each of which might 
offer differently tailored options!) 

Don't Forget This 

Data bases established using this program are memory sensitive. This 
was explained earlier. It bears repeating its ramifications, however, 
especially if you wish to customize several versions with differing 
capabilities. 

The essence of the matter is this: If you establish a data base in a 
system that has, say, 18K of memory available after the program itself is 
loaded, that is the amount of memory that the data base will be formatted 
to utilize. If you modify the data base management program by adding 
capabilities so that it expands in size, you may not be able to access data 
bases created by a smaller version. 

Thus, the rule of thumb, if you intend to work with several different 
sized versions of the program, is this: Always establish data base files 
with the largest data base program (which will give you the smallest data 
base file). This will insure that the data base file will fit in memory 
regardless of which version of the program you are using in the future. 
Got it? (If not, think about it until you do!) 

Streamlining 

Once you have used the program for awhile, you may find that certain 
options "bug" you. Perhaps, for instance, you always like to have record 
numbers displayed whenever you get a listing (or you never want them 

. shown). Whichever the case, it will take just a few seconds for you to 
modify the program so that it simply invokes the method you prefer. Do 



120 DATA BASE MANAGEMENT FOR THE APPLE 

it! It will save a few seconds of time whenever you use the program and 
make the program more enjoyable for you to use. 

You can employ this customizing concept at any "option" point in 
the program. If you never need to choose between certain alternatives, 
then fix the program up so that the selection process is eliminated at that 
point. 

This and That 

Advanced programmers may want to "play around" with other kinds of 
modifications or enhancements. 

One of the "quirks" of the original Apple II system is that it 
periodically has to "clean up" its character strings storage area. You 
probably will not notice this characteristic until you put a lot of data into 
a file. However, as a file becomes filled, this phenomenon presents itself. 
You may then begin to notice that, seemingly at random, the program 
seems to stop functioning for a few seconds. 

This "few seconds" delay can gradually increase, as more and more 
data is added to a file, until it becomes substantial. It appears that the 
amount of time required by the Apple to "clean up" its strings storage 
area increases as the number of strings being manipulated expands and 
the amount of "free" memory left contracts. Naturally, when you are 
close to filling up a data base file, this condition exists in its worst form. 

There are several solutions to this potential problem. One is to 
effectively "avoid" it by planning on not filling files to their near 
maximum capacity. My own experience has indicated that I seldom 
come close to filling up most of the data files I establish with this 
program. If I believe, at the start of a project, that a single file may be 
insufficient for a task, I generally opt to set up two files and split the data 
into logical portions. (Or else I consider using a much more powerful 
DBM package that stores individual records directly on a diskette.) 

A second solution, which I have heard about but have not personally 
implemented, involves adding special routines to enhance the Apple's 
string-handling capabilities. Some readers who are programming 
"heavies" may be aware of the availability of such routines. If so, you may 
want to consider adding them to this program. 

Machine-language programmers should be able to have a lot of fun 
enhancing this program. One area that you might want to tackle, if you 
have the requisite skills, is the SORT routine. It is one part of the 
program that could be considerably enhanced by implementing it in 
machine language. The sorting time of several minutes for a few 
hundred data items could be reduced to a matter of seconds! 

Another routine that would make a good target for improvement 
via machine-language routines would be the FIND function. Again, the 
big advantage would be the speed with which a datafile could be scanned 
using machine-language techniques. 



BELLS AND WHISTLES 121 

The subject of machine-language programming is well beyond the 
intended scope of this book. Suffice it to say, however, that with the 
complete structure and operation of this data base management 
program exposed and documented, one has a solid foundation from 
which to jump off and produce such enhancements. 

Toward a Disk-Based Version 

A memory-resident data base management program, such as the one 
that has been described in this book, is a good way for anyone to "get their 
feet wet" on the subject. It has many practical, utilitarian applications. It 
is relatively simple. Thus, it is a good educational tool. This applies 
equally to aspects of learning how to use a data base management 
program as well as how one is constructed. The interested, enthusiastic 
program explorer can quickly grasp essential concepts. Then, if desired, 
continue on to enhance or elaborate on the basic design. 

But any program that requires that the data it is operating on be 
entirely resident in memory, obviously, restricts the amount of data that 
can be conveniently processed. The next step up, in terms of data base 
management systems, is the so-called "disk-based" system. This refers to 
a system wherein the data base file resides on a mass memory disk. Each 
time a piece of information relating to the data base is accessed or 
manipulated, it is physically retrieved from the mass memory device. 

These days, a typical 5~-inch diskette can hold from 100.000 to 
400.000 bytes of data (depending on the equipment and technology 
being utilized). Larger 8-inch diskettes are approaching the capacity of a 
million or more bytes. And new "hard disk" drives are capable of storing 
tens of millions of bytes of information. Thus, any disk system can store 
considerably more data than the typical computer system's main 
memory. 

Organizing the data directly on a disk has advantages and 
disadvantages. Its major advantage is that a far greater number of items 
(records) can be stored and referenced as being held in one file. Its 
disadvantages have to do with such parameters as operating speed and 
disk-accessing complications. In a well-designed disk-based system, the 
user will be essentially oblivious to these problems. To the program 
designer, finding the solutions presents definite challenges. Some people 
have spent most of their lives studying the ramifications! 

In closing this book, I am going to point out something of interest to 
those readers who may want to consider going on to design a disk-based 
data base management program. The fixed record length format 
selected for use in this program was chosen because it could be the basis 
for an advanced disk-based program 

Be advised, however, that some of the problems that can arise 
when implementing such a program are not trivial. Should you want to 
go plowing ahead, however, here are a few possibilities to consider. 

-



122 DATA BASE MANAGEMENT FOR THE APPLE 

Basic file formatting information could be stored as a "header" file 
on the disk. This would typically contain the type of information stored in 
the A$() and A( ) arrays of this memory-resident program. Note that 
some elements (such as the number of the last record in the file) might 
have to be accessed and rewritten frequently. 

Information in the "header" file could then be used to access 
individual records stored on the disk. With all records in a given file 
defined to be of equal length, random access disk access techniques could 
be used to deal with individual records. This would provide for relatively 
fast individual record retrieval. 

Creating a program that would allow one to build up, make changes 
to, list, and even search through records in a disk-based file is relatively 
straightforward. 

The problems start to arise when one gets into aspects such as 
deleting records or sorting large data bases. Does one compact all the 
records "above" the deletion point, as was done in the memory-resident 
file? That could take a long, long time if each record must be accessed 
from a disk and then rewritten in another location. And what happens 
when one wants to sort a data base containing 200.000 entries? The 
memory-resident sorting algorithm used in this program is simply 
impractical when the individual records must be shuffled about on a 
disk. 

Intrigued? Give the matter some thought. Read some more books. 
Try your hand at your own ideas. After all, five years ago there was no 
such thing as data base management on a personal computer. There is 
plenty of opportunity for the enthusiastic, ambitious personal computer 
user with a flair for programming to come up with new techniques. 









I 

l T 
: 

l 

I 

- ·- ·--+---+--+--+---1 

I· +·+···+-· r-H 
1--\ +--+--+--+--+-----i 

I J_ ! 

T 

; 

1 
i ! i 

I 

Learn the basics of storing and organizing information on your Apple II Plus 
or lie home computer. This clearly written book includes DATA BASE, a 
simple, functional, and cross-referenced data base management program 
written in Applesoft BASIC. Using DATA BASE as a reference, the author 

, shows how data base management techniques apply to common chores. 
Keep mailing lists in order and print address labels, maintain household lists 
or inventories, organize appointments, manage checking accounts, put 
together a computerized tutor, and keep track of investment portfolios. 
And all with microcomputer power. 

Complete line-by-line commentaries and variable indexes enable advanced 
programmers to tackle more ambitious data-management tasks or more 
specialized reports. 

Also by Nat Wadsworth . .. 

GRAPHICS COOKBOOK FOR THE APPLE™ 
Use your Apple to draw, paint, and even write in 16-color, full-screen, low­
resolution graphics . The author explains the basics of computer graphics and 
supplies complete Applesoft BASIC programs that turn simple DATA statements 
into a host of graphic elements . The book also supplies a reference library of data 
needed to produce more than 100 different characters, shapes, borders, and 
backgrounds - everything from triangles to trees, from mosaic patterns to lakes 
and mountains, from sailboats to flying saucers. You can also produce 
billboard-size letters from A to Z. #6278-8, paper, 72 pages. 

Another book of interest .. . 

6502 SOFTWARE GOURMET GUIDE & COOKBOOK 
ROBERT FINDLEY 

The essential guide to machine-language programming for the 6502 
microprocessor - the chip that runs the Apple II Plus, lie, and Ill; the Atari 400, 
800, and 1200 XL; the Commodore PET, VIC-20, and 64; and many others. The 
book opens the new world of machine-language programming to the experienced 
BASIC programmer. Programmers who know assembly language programming 
for other microprocessors will find in this book a ready introduction to the 
6502. Programmers of every level will also find a wealth of tried-and-true 
assembly language subroutines for common computer chores: base conversions, 
input/output routines, multiple precision-floating-point arithmetic, decimal 
arithmetic, and super-efficient search-and-sort routines. #6277-X, paper, 
204 pages . 

t--- ····+--+--+--+--1 

l--+--+--+--+-+--1 

l--+--+--+--+-+---1 

1--t--+--+--+--+··-1 

l 

l 

i I ]!!I![ l 
! 1~·~1--+1-+--+--+--t--+-+-+--1r-+-+-+--+--+--+-+l--+--+-4 

H---+--+-+--+--t--t--+---+--+--+--+-H -'4-.A-'-!Y.__.· C~b ~N IB QR$k$. __ cc_O_J~H> A~l)-1 ,41 .!.4-~C-'l'-i--+-1-+-+1 -+-f-1+-' +-+--1 
RodhAlle Pah~_l New U_§rse).{ I l 

I I I J 1 I : l >--+-·-+--+--+---.-+- T 
IH---+--+--+--+--+--+--+--+--+--+-+--+--+--+--+--+1--+f--+- 0-8104-6282-6 . ! 

J I _L : 
I 
l _L I 




	Contents
	1. Introduction to computerized data base management
	2. Toward understanding data base management
	3. Operating the data base program
	4. Data base applications
	5. A technical overview
	6. Program commentary
	7. Bells and whistles



